PHY-IOOC FINAL EXAM SOLUTIONS:

PHYSICS 100C Final Exam, Thursday, June 7, 8AM-11AM

1. A loop of radius R has "glued" linear charge density distribution as a function of azimuthal angle φ, $\rho(\varphi)=\rho_{0} \cos ^{2} \varphi$. The loop is spinning with angular frequency ω. Find retarded potentials (Lorentz gauge)
A and V at the center of the loop.

$$
\begin{aligned}
& V(0, t)=\frac{1}{4 \pi \varepsilon_{0}} \cdot \int \frac{\varphi\left(\vec{r}, t_{R}\right) \cdot d \tau^{\prime}}{R}=\frac{1}{4 \pi \varepsilon_{0}} \int_{0}^{2 \pi} \frac{\rho_{0} \cdot \cos ^{2} \varphi \cdot R \cdot d \rho}{R}= \\
& =\frac{\rho_{0}}{4 \pi \varepsilon_{0}} \int_{2 \pi}^{2 \pi} \cos ^{2} \varphi \cdot d p=\frac{\rho_{0}}{2 \pi} \cdot \pi=\frac{\rho_{0}}{4 \pi \varepsilon_{0}}
\end{aligned}
$$

Here $\int_{0}^{2 \pi} \cos ^{2} \varphi \cdot d \varphi=\int_{0}^{2 \pi} \frac{1+\cos 2 \varphi}{2}=\left.\frac{\varphi}{2}\right|_{0} ^{2 \pi}+\left.\frac{\sin 2 \varphi}{4}\right|_{0} ^{2 \pi}=\pi$

$$
\vec{A}(0, t)=\frac{\mu_{e}}{4 \pi} \int \frac{\vec{y}\left(r, t_{R}\right) \cdot d \tau^{\prime}}{R}
$$

But $\left|\vec{y} \cdot d r^{\prime}\right|=\rho \cdot \omega R$ and $\vec{y}(\varphi)=-\vec{y}(\pi+\varphi)$ therefore opposite sections cancel and $\vec{A}=0$
2. Show that the x-rays (for which frequency much greater than resonance frequencies typically in UV range $\omega \gg \omega_{j}$) have an index of refraction less than 1 , and estimate the angle of total internal reflection for 10
keV x-rays incident on vacuum/metal interface at a grazing incidence. You may assume $\mathrm{N}=10^{30}$ "free" electrons per m^{3} in a metal.
Eq. 9.170: $n=1+\frac{N_{m} e^{2}}{2 m \varepsilon_{0}} \cdot \sum \frac{f_{j}\left(\omega_{j}^{2}-\omega^{2}\right)}{\left(\omega_{j}^{2}-\omega^{2}\right)^{2}+\sigma_{j}^{2} \omega^{2}}$

$$
\begin{aligned}
& \text { for } \omega \gg \omega_{j}^{2} \\
& \frac{\omega_{j}^{2}-\omega^{2}}{\left(\omega^{2},-\omega^{2}\right)^{2}+\gamma_{j}^{2} \omega^{2}} \approx \frac{-\omega^{2}}{\omega^{4}+\gamma_{i}^{2} \omega^{2}} \approx-\frac{1}{\omega^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& N=N_{m} \cdot \sum f_{i} \quad\left(\frac{\text { ecerrons }}{\text { volume }}\right) \\
& n=1-\frac{N e^{2}}{2 m \varepsilon_{0} \cdot \omega^{2}}=1-\delta
\end{aligned}
$$

Where $\delta=\frac{N e^{2}}{2 m q_{0} \omega^{2}}=6.8 \cdot 10^{-6}$
(we use $\omega=\frac{\frac{L}{\hbar}}{\hbar}=\frac{10 \mathrm{keV}}{\hbar}=\frac{10^{4} \cdot e}{\hbar}$ and e^{2} cancels)

$$
\begin{aligned}
& \begin{array}{c}
n=1 \alpha> \\
\text { OR } \\
\operatorname{sinec}\left(\sin \left(\frac{\pi}{2}-\alpha\right)=(1-\delta) \cdot \sin \frac{\pi}{2}\right. \\
\\
\end{array} \\
& \text { OR } \cos \alpha \approx 1-\frac{\alpha^{2}}{2}=1-\delta
\end{aligned}
$$

and $\alpha=\sqrt{2 \delta}=3.7 \cdot 10^{-3}$
OR 3,7 mad OR 2.1 deg
3. a) A loop of radius R (yes, yet another spinning charged loop problem!) is centered at ($0,0,0$) and is oriented in x - y plane as shown on the Fig. 1. Upper half of the loop has "glued" uniform linear charge density $+\rho$, and bottom half of the loop has linear charge density $-\rho$.
Find total power radiated if the loop is spinning around its axis (with
(with respect to z axis) at angular
b) How would the answer change if the loop is instead is spun around x axis (at the same frequency)? How about if it was spinning around y-axis?
DiPole Moment (along \hat{y} at $t=0$ de to symmetry)

$$
P=2 \int_{0}^{\pi} \rho \cdot R \cdot \sin \varphi \cdot R \cdot d \rho=\left.2 \rho R^{2}(-\cos \varphi)\right|_{0} ^{\pi}=4 \rho R^{2}
$$

A) During rotation $\ddot{\ddot{P}}=-\omega^{2} \vec{p}$
and therefore clue to Larmor formula

$$
P_{o w e r}=\frac{\mu_{0} \cdot|\ddot{p}|^{2}}{6 \pi c}=\frac{\mu_{0} \omega^{4}\left(4 \rho R^{2}\right)^{2}}{6 \pi c}=\frac{8 \mu_{0} \omega^{4} \rho^{2} R^{4}}{3 \pi c}
$$

B) spinning around x Gives the same ANswer AS A) since \vec{P} rotates at w with respect to Axis $\perp \vec{p}$.
Spin around y-axis has $\ddot{p}=0$ therefore no dipole radiation.

1. a) Electric and magnetic fields at some region of space are given by two vectors, \mathbf{E} and \mathbf{B}, such as $\mathbf{E} \perp \mathbf{B}$. Show that there always exists a frame of reference in which $\mathbf{B}=0$, and find its velocity (direction and b) Show that for two arbitrary (no longer mutually perpendicular) vectors \mathbf{E} and \mathbf{B}, their scalar product E•B is relativistically-invariant. Comment on existence of frame of reference found in a) when \mathbf{E} and \mathbf{B}
are not perpendicular.
A) Lets Define $\hat{y}\|\vec{B}, \hat{z}\| E$ $\tilde{x} \perp \vec{E}, \vec{B}$, so that $\vec{B}_{z}=0, E_{y}=0$ and $E_{x}=B_{x}=0, B_{y}|\bar{B}| E_{z}=|\bar{E}|$
In FRAMe of Reference moving along \hat{x} :

$$
\begin{array}{ll}
E_{x}^{\prime}=B_{x}^{\prime}=0 \\
E_{y}^{\prime}=0 & B_{y}^{\prime}=\gamma\left(B_{y}+\frac{v}{c^{2}} E_{z}\right)
\end{array}
$$

$$
E_{z}^{\prime}=\gamma\left(E_{z}+v B_{y}\right) \quad B_{z}^{\prime}=0
$$

(Eq. 12.108)
FOR $\bar{B}=0$ (OR $B_{y}=0$)

$$
B_{y}+\frac{v}{c^{2}} \cdot E_{z}=0 \Rightarrow v=-\frac{B_{y} \cdot c^{2}}{E_{z}}
$$

OR $V=-\frac{|B| \cdot C^{2}}{|E|}$
then $|E|=E_{z}^{\prime}=\gamma\left(E_{z}+V B_{y}\right)=\gamma\left(|E|-\frac{|B|^{2} \cdot c^{2}}{|E|}\right)=$

$$
\begin{aligned}
& =\gamma|E| \cdot\left(1-\frac{|B|^{2} c^{2}}{|E|^{2}}\right)^{2} \text { and } \\
& \gamma=\left[1-(y / c)^{2}\right]^{-1 / 2}=\left(1-\frac{|B|^{2} \cdot c^{2}}{|E|^{2}}\right)^{-1 / 2}, \text { so that } \\
& |E|=E_{z}^{\prime}=|E| \cdot\left(1-\frac{|B|^{2} c^{2}}{|E|^{2}}\right)^{1 / 2}
\end{aligned}
$$

$$
\text { b) } \bar{E}^{\prime} \cdot \bar{B}^{\prime}=E_{x}^{\prime} \cdot B_{x}^{\prime}+E_{y}^{\prime} \cdot B_{y}^{\prime}+E_{z}^{\prime} \cdot B_{z}^{\prime}
$$

using EQ. 12.108:

$$
\begin{aligned}
& E^{\prime} \cdot \bar{B}^{\prime}=E_{x} \cdot B_{x}+\gamma^{2}\left(E_{y}-v B_{z}\right)\left(B_{y}+\frac{v}{c^{2}} E_{z}\right)+ \\
& +\gamma^{2}\left(E_{z}+v B_{y}\right) \cdot\left(B_{z}-\frac{v}{c^{2}} E_{y}\right)=E_{x} \cdot B_{y}+ \\
& +\gamma^{2}\left(E_{y} B_{y}-v B_{y} B_{z}+\frac{v}{c^{2}} E_{y} E_{z}^{\prime}-\frac{v^{2}}{c^{2}} B_{z} E_{z}+\right. \\
& +\underbrace{}_{z} B_{z}+v B_{y} B_{z}-\frac{v}{c^{2}} E_{y}+\frac{v^{2}}{c^{2}} E_{y} B_{y})= \\
& =E_{x} B_{x}+\underbrace{\gamma^{2} \cdot\left(1-\frac{v^{2}}{c^{2}}\right.}_{1}) \cdot\left(E_{y} B_{y}+E_{z} B_{z}\right)= \\
& =E_{x} B_{x}+E_{y} \cdot B_{y}+E_{z} \cdot B_{z}=E \cdot \bar{B}
\end{aligned}
$$

If \vec{E} is Nor $\perp \bar{B} \quad \bar{E} \cdot \bar{B} \neq 0$
AND $\bar{E}^{\prime} \cdot \bar{B}^{\prime} \neq 0$ so that $B^{\prime} \neq 0$
in All FRAmes
5. Large Hadron Collider is set to collide two beams of protons travelling at the same speed in opposite protons in the frame of reference of one of the beams?

$$
\begin{aligned}
& m_{0} c^{2}=1 \mathrm{GeV} \quad E=\gamma m_{0} c^{2}=7 \mathrm{TeV} \\
& P_{x}=-\gamma m_{0} V \quad P_{0}=\frac{E}{c} \\
& P_{0}^{\prime}=\frac{E^{\prime}}{c}=\gamma\left(P_{0}-\beta \cdot P_{x}\right)=\gamma\left(\frac{E}{c}+\beta \gamma m_{0} v\right) \\
& E^{\prime}=\gamma E+\gamma^{2} \cdot m_{0} v^{2}=\gamma(E+\underbrace{m_{0} c^{2}}_{E})+\gamma^{2} m_{\infty}(\underbrace{v^{2}}_{-1 / \gamma^{2}}-1) \cdot c^{2} \\
& \text { Since. } x=E
\end{aligned}
$$

Since $\gamma=\frac{E}{m_{0} c^{2}}$

$$
E^{\prime}=2 \gamma E-m_{0} c^{2}=\frac{2 E^{2}}{m_{0} c^{2}}-m_{\infty} c^{2}
$$

(AlSO: $E^{\prime}=\left(2 \gamma^{2}-1\right) \cdot m_{0} c^{2}$ or $E^{\prime}=\frac{2 \gamma^{2}-1}{\gamma} \cdot E$)
In any case, since $\delta=7 \cdot 10^{3}$,
$E^{\prime}=1.4 \cdot 10^{4} \mathrm{E}$ OR $9.8 \cdot 10^{16} \mathrm{eV}$ or 98 PeV
Meta 9

