PHYS 100C, Homework #1, due Monday, April 12 before class.

Problem 9.2 Show that the **standing wave** $f(z, t) = A \sin(kz) \cos(kvt)$ satisfies the wave equation, and express it as the sum of a wave traveling to the left and a wave traveling to the right (Eq. 9.6).

Problem 9.3 Use Eq. 9.19 to determine A_3 and δ_3 in terms of A_1 , A_2 , δ_1 , and δ_2 .

Problem 9.5 Suppose you send an incident wave of specified shape, $g_I(z - v_1 t)$, down string number 1. It gives rise to a reflected wave, $h_R(z + v_1 t)$, and a transmitted wave, $g_T(z - v_2 t)$. By imposing the boundary conditions 9.26 and 9.27, find h_R and g_T .

Problem 9.10 The intensity of sunlight hitting the earth is about 1300 W/m^2 . If sunlight strikes a perfect absorber, what pressure does it exert? How about a perfect reflector? What fraction of atmospheric pressure does this amount to?

Problem 9.11 In the complex notation there is a clever device for finding the time average of a product. Suppose $f(\mathbf{r}, t) = A\cos(\mathbf{k} \cdot \mathbf{r} - \omega t + \delta_a)$ and $g(\mathbf{r}, t) = B\cos(\mathbf{k} \cdot \mathbf{r} - \omega t + \delta_b)$. Show that $\langle fg \rangle = (1/2) \operatorname{Re}(\tilde{f}\tilde{g}^*)$, where the star denotes complex conjugation. [Note that this only works if the two waves have the same \mathbf{k} and ω , but they need not have the same amplitude or phase.] For example

$$\langle u \rangle = \frac{1}{4} \operatorname{Re}(\epsilon_0 \tilde{\mathbf{E}} \cdot \tilde{\mathbf{E}}^* + \frac{1}{\mu_0} \tilde{\mathbf{B}} \cdot \tilde{\mathbf{B}}^*) \text{ and } \langle \mathbf{S} \rangle = \frac{1}{2\mu_0} \operatorname{Re}(\tilde{\mathbf{E}} \times \tilde{\mathbf{B}}^*).$$