Ptychographical Fresnel Coherent Diffractive Imaging

Sebastian Dietze

Outline

- Why go lensless?
- Coherent Diffraction Imaging (CDI) phase retrieval Techniques
- Fresnel Keyhole Method
- Combining FCDI and PIE

Limitations of Focusing Optics

• Fabrication Limits

- Aberrations, Cost, Efficiency

- Practical Limits
 - Alignment, Degradation

Parabolic Planar Compound Lens A. Artemiev. NIMPRA. **543** 322 (2005)

Silicon Fresnel zone plates for high heat load. J. Vila-Comamala. Micr Eng **85** No. 5-6 (2008)

HIO Phase Retrieval Algorithm

End result obtains the full complex reconstruction showing particle and strain

I. Robinson, R. Harder. Nature Materials 8, 291 (2009)

Complimentary Images

Phase Shift: Multiple exposures with phase shifted wave front. I. Johnson et al.PRL **100** 155503 (2008)

Ptychography : Multiple exposures with significant overlapping region

Fresnel Imaging

Required ConditionsFar Field: $Z \gg D$ Thin sample: $z \ll Z$ Alternatively, $\frac{a^2}{\lambda L} \gtrsim 1$ $\lambda \ll L$

Resolution will be wavelength limited, not FZP resolution limited

Keyhole

The central region is an in-line hologram using a curved wave front. Propagate back to sample plane to obtain additional real space constraint for phase retrieval algorithm.

G. Williams. PRL 97 025506 (2006)

PFCDI on AU Test Pattern

Tripathi et al.

PFCDI on GdFe Stack

Tripathi et al.

Comparison of Reconstruction

Azimuthal Symmetry in 2D Diffraction in Fraunhoffer regime using Elastic Scattering

For thin films, can use a 2D FT of scattering density to obtain diffraction pattern $F(q_{\perp}) = FT2D\{f(x_{\perp})\} = \int dx_{\perp}f(x_{\perp})e^{iq_{\perp}\cdot x_{\perp}}$

The complimentary point is at $\phi' = \phi \quad \theta' = \theta + \pi \longrightarrow q'_{\perp} = -q_{\perp}$

The C.C. of FT2D at complimentary pt is, $F^*(q'_{\perp}) = \int dx_{\perp} f^*(x_{\perp}) e^{iq_{\perp} \cdot x_{\perp}}$ $\mathbf{q}_{\perp} = \frac{2\pi}{\lambda} (a\hat{x} + b\hat{y})$

 $a = \sin(\phi) \cos(\theta)$ $b = \sin(\phi) \sin(\theta)$

Therefore if f(x) is real, the intensities are equal. $I(q'_{\perp}) = |F(q'_{\perp})|^2 = I(q_{\perp})$

Diffraction; Contrast Mechanism

$$\begin{split} 0_{\pm}(\mathbf{r}) &= e^{-\mu_{0} t} e^{\pm m_{z}(\mathbf{r})\mu_{c} t} = e^{-\mu_{0} t} [\cosh(m_{z}(\mathbf{r}) \mu_{c} t) \pm \sinh(m_{z}(\mathbf{r}) \mu_{c} t)], \\ I &= \frac{I_{+} + I_{-}}{2} = \frac{1}{2} [|FT\{P(\mathbf{r})O_{+}(\mathbf{r})\}|^{2} + |FT\{P(\mathbf{r})O_{-}(\mathbf{r})\}|^{2}] \\ &= e^{-2\mu_{0} t} \left[|FT\{P(\mathbf{r})\cosh(m_{z}(\mathbf{r}) \mu_{c} t)\}|^{2} \\ &+ |FT\{P(\mathbf{r})\sinh(m_{z}(\mathbf{r}) \mu_{c} t)\}|^{2}\right]. \end{split}$$

