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Abstract 

Starting with the energy functional of the charge density wave, the distribution of phase distortions due to impurities 
coupling strongly to the charge density wave phase is calculated. The inclusion of interference effects of different 
impurities allows an estimation of the phase coherence length. The results are found to be consistent with those obtained 
by the phenomenological ansatz of individual pinning. 

1. Introduction 

The phase pinning due to impurities is a funda- 
mental problem in charge density wave (CDW) 
systems because it influences both thermodynamic 
and dynamic properties [1]. Based on the direct 
coupling of the CDW phase to impurities [2], 
Fukuyama and Lee developed a microscopic phase 
theory [3], from which Lee and Rice derived an 
energy functional of Ginsburg-Landau type [4]. 
Most analytic investigations followed the sugges- 
tions of Fukuyama, Lee and Rice and assumed the 
pinning to be either strong or weak. 

Recently, Bfildea used a phenomenological 
ansatz generalizing strong (weak) to individual (col- 
lective) pining [5]. Starting from the strong pinning 
limit, the CDW phase O(r) is - instead of being fixed 
to the value q~i at the impurity site ri - allowed to 
vary within the range q~o around ~o~. Similarly, the 
phase 06 in the weak pinning domain 6 is allowed to 
vary within [~b~- ~ko, ff~ + ~ko], where exp(i~6) 
= No t/2 (exp(--  i0~))6, i.e. the phase factor result- 

ing from averaging over the No impurities of the 
domain 6. 

This ansatz assumes a uniform distribution 
of 0 - ~01 within [ -  ~Oo, tpo] for individual pinn- 
ing and 0 6 -  ~'a within [ -~bo ,  ~bo] for collect- 
ive pinning. The energy functional is then 
expressed in terms of the phenomenological 
parameters tpo(~bo) and E, where the latter 
describes the extension of impurity induced 
phase deformations. The parameters are deter- 
mined by minimizing the thermodynamic 
potential. 

Starting with the complete energy functional 
Q[0], the present work shows that impurities 
coupling strongly to the CDW phase indeed lead 
to a uniform distribution such as used in Ref. [5], as 
far as interference effects between different 
impurities are neglected. Inclusion of the latter 
enlarges q~o and smooths the edges of the distribu- 
tion. 

2. Energy functional and equation for the phase 

If all variations over a distance of the order of the 
amplitude coherence length ~ = hvF/A are small, 
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the energy functional of  a system of chains parallel 
to the x-axes can be expressed [6] as 

~-218] = E f a x  ~hVF(88n~ 2 
. J  t 4= t,~-x ,/ 

e 88. 
+ - 2 . I . = [ 1  - cos(8.  - 8,.)] + - ~ - -  4 .  

7~OX 

- -  ~ V~ann,(X - xi)cos(~i - 8.) I 
i J 

d3r 2 
- J--~-n [ g 4 ( r ) ]  , (1)  

where 4(r)  is the electrostatic potential  and 
4 . (x )  = 4(x,  r.),  r .  being the transverse coordinate  
of chain n. The summat ion  over  i runs over  all 
impurities at posit ions {xi, n~}. The static C D W  
phase 0. is then determined by the vanishing vari- 
at ion of Eq. (1) [7, 8]: 

hV F 828n 
2 8x 2 + ~ J . = s i n ( 8 , .  - 8.) 

m 

8 4 .  
+ ~ Via . . , (x  - xi)sin(~oi - 8.) = - e ~ -  x . (2) 

i 

For  small tempera tures  no quasi-particles are pres- 
ent, and the phase gradient  is connected to the 
charge density through 

1 K 2 hV F 88 .  

P" e 4 n  2 ~ x '  (3) 

with K the inverse T h o m a s - F e r m i  screening length 
of the metallic state, 

8e  2 

K 2 -- hvvd 2 , (4) 

and d~ 2 the cross-section of one chain. J .=  describes 
interchain interaction. In the absence of an external 
electric field, 4 .  is created by the C D W  charge and 
has to be found self-consistently with Eq. (3) and 
Poisson's  equation.  

To  solve the p rob lem analytically, some simplifi- 
cat ions will be made  [7]: 

(i) The chains are assumed to form a square 
lattice, where each chain interacts only with its next 
neighbours,  i . e . J .m = J for next neighbours  and 
zero otherwise. 

(ii) A discrete Laplacian in the transverse direc- 
tion is used in the Poisson equation: 

824n 4n + t,, + 4 .  _ t,, - 2 4 .  
8x 2 d~ 

4 .  + t= + 4 .  _ t= - 2 4 .  
d2 ' = 4rip..  (5) 

Off) In the term describing coupling between 
chains, the sine is substi tuted by a sawtooth  poten-  
tial. Because distort ions due to impurities are 
smaller than n at least in the absence of an 
external electric field - this procedure  is equivalent  
to a linearization. 

With these simplifications one obtains  

K 2 hvv 80.  _ 8 2 4 .  4 .  + 1,, + 4 .  _ t, - 2 4 .  
e 2 8x  8x  2 4 d2 ' 

4 n  + t= + 4 .  _ t= - -  24n 
+ d, z , (6) 

0 4 .  hvv 828. 
e ~  x = ~ Vibnn,(X - xi)sin(cpi - 8n) + ~ -  8x  ~ 

i 

+ J[O.+t, .  + O. t , . -  28,, + 8n+t: + On-t= - 20.].  

(7) 

The phases will be measured  from their values 
at infinity, i.e. 0. - 0. - 0o~, (oi - ~oi - 0o~. Then,  
0. is the phase per turba t ion  on chain n at 
posit ion x due to impurities at posit ions 
(xi, nO. 

Eqs. (6) and (7) will be solved by Fourier  trans- 
formation:  

~/d, dky ~/d~ dk~ 
f . ( x )  = J -~ /a i  2n J _  ~/ai 2n 

d 
x f _ o  -~nf(q,k)ei(qx +k"di), (8) 

f ( q ,  k) = d 2 dxf~(x)e  - i(qx + k.d.) (9) 
. - o f )  

Denot ing  the electric potential  due to internal 
phase deformat ions  by ~, and assuming that  no 
external field is present  (the effect of which will be 
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discussed in Section 6), the coupled equations (6) 
and (7) transformed to Fourier space, 

• 2 h / ) F  Z'z (q2 + ~2)eq~(q ' k) = lq~c ~ - v ( q ,  k), (10) 

^ 2  hVF ~ 
(q2 + ~k )--~-O(q,k)  -- S (q , k )  = i q e ~ ( q , k ) ,  (11) 

are then solved to yield 

2 
if(q, k) = ~vvg (q  , k )S(q ,  k), (12) 

q2 + ~2 
g(q, k) = q2(q2 + ~c2 + (1 + ~)~2) + ct~4 

~2 1 
"" t¢2 q2 + a~4/K2, (13) 

with the anisotropy factor ~ t - -2Jd2/hv~,k2= 
4(sin 2 d Lkr/2 + sin 2 d . k J 2 ) / d  2 ~ k 2 + k 2 - k 2 and 
the scattering matrix 

S(q, k) - d E ~" Vi sin(~i - Oni(Xi))e -i(qx, + knd±) 
i 

(14) 

The last step in Eq. (13) holds because xd± >> 1 for 
relevant Fermi velocities, VF ~ 2 X 10 5 m/s. 

3. Phase equation at impurity sites 

To find the phase at the impurity position (xi, ni), 
one has to transform Eq. (12) using Eq. (8): 

On,(Xi) = ~ d2k 2~/~(q, k)e i(qx' + knfd±) 

J(2r0 z 

-- f d2k d q Z d  2 
j ( ~ ) z  2n hv v ~j Vj sin(q3 t - O.~(xt))g(q , k) 

× ei[q{x, - xj) + k(n~ - nj)dz]. (15) 

In Eq. (15), the phase factors cancel for i = j .  The 
corresponding term will therefore be extracted 
from the summation over impurities• Defining 

furthermore 

( d 2 k  dq ..~ 1 
Ko - j(2~t) 2 2 9 ( q ,  k ) ~  2~cdE--~'  (16) 

KO-~  ~ dqo(q , k )e i [q lx ' - xJ )+k 'n ' -n j )dA  (17) 
J(2rt) 2rt 

and 

6, - ~Pi - O.,(xi) - (oi - O.,(xi), (18) 

one gets a system of implicit equations for 6i: 

Oi = 6i + sin6i + j ~ i ~ - £ o  sin 6t , (19) 

where a =-hvF/2d2, ViKo measures the strength of 
the coupling of impurities to the CDW phase. 
Strong coupling is equivalent to small a. 

Using the approximation of Eq. (13), the q-integ- 
ration in Kit  (Eq. (17)) can be performed, yielding 

= K I ~r)rlz) Ki j  o it " i t ,  (20) 

icy~z) f ~  iS = du cos(nl~jmrtu)exp( - uZlxi  - xtl/t~ll), 

(21) 

KdE 
ell  2A, 122) 

with n~i~/z) being the component of ni - n t in the 
y /z -d irec t ion .  :11 is the correlation length in the 
parallel direction, i.e. along the chain: impurities at 
sites x s with [ x i -  xtl >> :11 do not interfere with 
phase distortions due to impurity i. Along one 
chain (nit =0),  Eq. (21) can be expressed as 

lit = x/n:ll/41xi - xtl  eft(x/I x,  - x t 1/:11). For I xi - 
xi+l] ~ Ell, i.e. small impurity concentration 
ci = dll/( txl - xi +11 ) with longitudinal lattice con- 
stant dll , the error function becomes unity and Kij  is 
therefore proportional to cl. In the opposite limit, 
Ixi-xi+xl '~:11 (large impurity concentration), 
I~ ~ 1 - I xi - xi+ 1 I/3:11 and therefore 
Kit  =- K i j / K o  < (1 - Cidll/3:ll) 2. 

In the transverse direction, I o is vanishing for 
xi = x s. The maximum will be obtained when both 
the argument of the cosine and the exponential 
function are of the same order of magnitude, i,e. 
I x i -  xtl/:ll ~ (niflr,) 2, yielding (nit'if,) -1  a s  a rough 
estimation for llt. The decay of Kit is therefore 
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proportional to the squared inverse distance of the 
chains. 

Note that II~l < 1 and therefore I/<o- I < 1. /{~j 
becomes very small if Ix i  - x il and/or Ini  - n i l  be- 
come large, i.e. at small impurity concentration and 
high order of neighbourhood of impurities. To sim- 
plify further calculations, Vi = V g i will be as- 
sumed in the following considerations. 

4. Distribution of  ~i 

Eq. (19) completely determines the phases at the 
impurity sites. However, in a real system the impu- 
rity positions are not known. Furthermore, most 
measured quantities only contain information 
about the average impurity distribution. 

If the impurities are uniformly distributed in the 
sample, then also the ~b~ are uniformly distributed 
within the range [ -  re, re], i.e. 

~(2re)- 1, - re ~ ~bi ~< re, (23) 
P~(@i) = (0, otherwise, 

is the corresponding distribution function. The nth 
moment of ~b~ is then given by 

1 -+- ( -- 1)" re" 
( 0 7 >  - 2 n + 1" (24) 

From the moments, the distribution function can 
be constructed by 

do" ~ (~oi> I f . . . . .  P~(Oi)=2-~-~ ,.=o v~( iaFe  i+,o (25) 

If one therefore succeeds to express all moments 
of ,5~ by those of q3~ via Eq. (19), the distribution of ,5~ 
is completely determined. Although this cannot be 
done exactly, an approximation can be obtained for 
small values of the parameter a. 

Because the ~ are not correlated, averages over 
products will factorize: 

1 + ( -  1)" 1 + ( -  1)" re" re" 
2 2 m + l n + l '  

(26) 

Substituting q3i and ~b~ in the left-hand side of Eq. 
(26) by Eq. (19) gives a system of equations for the 
moments and correlations of 6i: 

([ )] ( ~ )  (0~) = '51 + sin,5i + ~ /(usin'5z 
/ # i  

x '5~ + sin '5i + ~ /<jl sin '51 . (27) 

In the limit a --, 0, Eq. (27) is solved by '5~ = 0 V i, 
resulting in Pa('si)= '5('51) as distribution function 
for '5, whereas a--,oo leads to <~'><qS~> 
= (,5~",5~), i.e. ,51 has the same distribution as ~ .  

If a ~ 1 and therefore '5~ ~ 1, the sines in Eq. (27) 
can be replaced by their arguments, leading to 

a'+"<07'> <07> 

(( )( r) = ,5, + E K,,,S, 'st + E Ra,'5, , (28) 
I # i  I• j  / 

with a - a/(1  + a) and ~i~j - K . i f l ( l  + a). Without 
interference effects between different impurities 
(gij = O) one gets 

1 + (--  1)" 1 + ( -  1)" (dn) m (art)" 
(,57,5~> (29) 2- -2- m + l n + l '  

i.e. the parameter tpo = re in the distribution 
P~o (Eq. (23)) is renormalized to ~oo = art and there- 
fore 

Pa('si) = (0, otherwise. (30) 

To investigate the mutual influence of phase dis- 
tortions at different impurity sites, the linearized 
version of Eq. (19), 

'5i = a(°i -- E g i J ' s J  , (31) 
i # i  

will be used. It should be mentioned that, although 
a ,~ 1 was assumed to justify the linearization of 
sin,si, Eq. (31) is not divergent even for a--+ ao, 
because a < 1. Eq. (31) contains the coupling of 6i 
to the phases at all other impurity sites j. The 
summation, however, can be restricted to impu- 
rities within Eli in longitudinal and d± in transverse 
direction, because the correlation between ,5~ and 6j 
is vanishing for impurities j outside this region. 
Their contribution will therefore vanish in average, 
because the distribution of ,51 is symmetric. 
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If I V~j ¢ i ~(ijl < 1, one can get corrections of the 
order of/(i] by iterating Eq. (31) n times. In second 
order one then obtains 

j # i  I # i , j  

Interference of phase distortions due to different 
impurities influences the distribution of 6~ in a two- 
fold way: 

(i) The first term, proportional to ~i, broadens 
the distribution because it renormalizes fi to ^ ^ 
ti(1 + y~j ¢ ~KuKj3.  However, it leaves the distribu- 
tion uniformly. 

(ii) The second term contains the contribution of 
impurities j # i. It leads to a smearing of the edges 
of the distribution. 

Taking the nth power and averaging both sides 
of Eq. (31) and using Eq. (26) gives, up to second 
order in K, 

1+ 1)" [ ~ (  1 

x + gj + O(K3), (33) 

which can be described by the distribution function 

P~(6 )  = 

1 4- 12 (1 4- ~-o)(2/; -- ] 1 + ~-0 ), 

6 
--(1 + e ) ~ < - - <  - - ( l - -e ) ,  

¢Po 
1 

4~00 2, --(1--e)<~ ~ < l - e ,  (34) 
~PO 

1 + ~ ( 1 -  ~ o o ) ( 2 e - - 1 - ~ o o  ) '  

,5 
1 - -  ~ . . .<--  --.< 1 4- ~. 

~Po 
It contains two parameters, the pinning phase ~0o, 
describing the average amplitude of impurity 
induced phase distortions, and e, measuring the 
interference of phase distortions due to different 
impurities. They are connected to the intrinsic 
parameters through 

¢Po = ~rt 1 + ~ KuKj i  =~rt 1 4- , (35) 
.j vsi 

•2 ~--- 2 Z /(~" (36) 
j ¢i 

Note that the distribution function is not un- 
equivocal because all moments are only calculated 
up to the second order in/( .  Therefore, calculating 
P6 via Eq. (25) can lead to unphysicai results. How- 
ever, P~ given in Eq. (34) agrees well with the ex- 
pected behaviour described above. 

5. Squared phase gradient 

Now, all quantities depending on the distortion 
at the impurity sites (xi, ni) can be calculated. How- 
ever, the energy functional also contains the elastic 
energy, which is - according to approximating the 
sine by a sawtooth potential in Eq. (2) - a function 
of the squared phase gradient, scaled in the trans- 
verse direction by ~. 

At arbitrary position (x, n), the phase distortion 
is given by 

2d2 V E sin 6. ( d2k dq 
•.(x) - hvv , ' J(27t) z 2ng(q'k) 

× exp(i[q(x - xi) + k(n - n i )d i] ) .  (37) 

The scaled squared phase gradient is then obtained 
as  

- L-67j + ~ [ ~ " -  ~"-',]2 

-I"- ~ 2  [-0"n --  On _1"]2 

= - 6. ~ d2kcl2k' dq dq' [2d 2 V ]2 ~ sin 6i sin j j (27t)4 (2~) 2 
L~J u 

^ ^  

(qq' + akk')g(q,  k ' )g(q, k') 

× exp(i[q(x - x/) + q'(x - xj) 

+ k(n -- ni)d± + k'(n - n~)d± ]). (38) 
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Integrating over x and summing over n results in 

y~ dx . f  [ v~7-]2 

L--~-vv j Losin26i + E Li.isinFisinFj, 
j # i  

(39) 
with 

/' d2k dq, 2 
Lo =- J(-~)2 ~ q  + ~k2)gZ(q,k) 

1 (~ rt3~d~ ) Ko (40) 
+ 2 '  

=-- ~ d2k dq 
Li~ j (-~)2 ~ ( q  2 + akE)gZ(q, k) 

x exp(i[q(xi - xj) + k(ni - nj)d±]). (41) 

The last step in Eq. (40) holds because xd± >> 1, 
although this approximation is not essential for the 
further calculations. 

Estimating L~j/K~j = (1 + fl)Lo/Ko with fl ,~ 1 
and replacing the sines in Eq. (39) by their argu- 
ments one obtains 

Vt 

-2Kod2a  2 (62 )+( 1  + , (42) 

where V~ is the volume per impurity. 
Calculating the correlation function up to the 

first order i n / (  in the same way as the moments, 

(6,6,) = - _~(fi~)z R,,, (43) 

and inserting the second moment gives 

- 361 a2 I + y R ~  
j # i  

v, 

x 1 + ~ / ( ~ - 2 ( 1 + f l ) ( 1  + a )  
j ¢ i  " i 

- ~11 1 -  1 + - f l ~ N  l + a "  
(44) 

Besides q~o and e, the length (fl (yet implicitly con- 
tained in e) occurs as third parameter, characteristic 
for the extension of impurity induced phase defor- 
mations. 

6. External electric field 

Splitting the electric potential into two parts, the 
first containing an external electric field in the x- 
direction and the other effect of charges due to 
internal phase deformations, the Poisson equation 
(5) reads 

- vqq , . , (x )  + ~.(x)) = - -  
K2hv~O[O + O~ + 0.ix)] 

2e ~x 

(45) 

The constant part Ohas been split from 0o0 because 
it is connected to the external field Eext = - ~ e x t  
(x)/Ox by 

2e 
0 = x-~hVv E~x,. (46) 

Applying an external electric field can therefore be 
taken into account by a global shift of the phase 0. 
However, the constant part of 0 did not occur in the 
distribution function calculated above. The reason 
for this is that the system with randomly distrib- 
uted impurities has many metastable states to each 
phase 0o0 belonging to more or less the same en- 
ergy. In configuration space, however, these states 
are separated by high potential barriers, so that no 
transition between these states is possible on short 
time scales, i.e. the system behaves glassy. 

The calculations of the previous sections there- 
fore belong to a situation where the system is in 
equilibrium with the external field, no matter 
whether the latter is vanishing or not. The polariza- 
tion induced by an external field will therefore be 
"frozen" (in glassy sense) if the system has reached 
equilibrium. It will relax, following a stretched ex- 
ponential law [9], when the external field is 
switched off. 

The shift of 0~ by an external field can be 
taken into account by moving the center of the 
distribution P~0 from 0 to -O, keeping the average 
of 0 at 0. Then, the impurities try to fix 
3 i = On,(Xi) - -  q9 i. In fact, the distribution of 6i will 
also be shifted by ~; calculating the first moment 
in the same way as in Eq. (33), but with shifted 
distribution Pe, gives 

0[ ( )1 3=~Oo~ 1 + ~ /(ii 1 -  y" /(j, . (47) 
j # i  \ l¢~i,j 
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With ~, the fourth parameter  is obtained, which 
is necessary to describe the behaviour of a pinned 
C D W  in an external electric field. 

7. Conclusions 

Starting with the thermodynamic potential as 
functional of phase deformations On(x) and the elec- 
trostatic potential (1), an implicit equation for 0 in 
Fourier space was obtained, containing the phases 
of randomly distributed impurities. For  the limit of 
impurities coupling strongly to the C D W  phase, 
the distribution of 0 at the impurity sites and the 
integral over the squared phase gradient, propor- 
tional to the elastic energy, have been calculated. 
They can both be expressed by the pinning phase 
~Oo, the longitudinal coherence length fil, and 
a parameter  e, describing the interference between 
phase deformations due to different impurities. 
Furthermore,  the average phase displacement 
caused by an external electric field beyond the 
threshold field is given by ~. The slope of 0 is 
therefore characterized by a distortion of tpo at the 
impurity sites, decaying on the length fll in the 
longitudinal direction. Phase correlations in the 
transverse direction are restricted to neighbouring 
chains. 

Let the equilibrium phase now be denoted by 
0rain. Because it has been found by minimizing the 
thermodynamic potential, any change in its slope 
must lead to higher energies. This especially holds 
for changing 0ml. by varying the intrinsic para- 
meters, but keeping its functional form constant. 
Using the correct functional form as input for 
f2 and looking for vanishing variation with respect 
to the parameters must therefore lead to the same 
result for the latter. In the same way, using a good 
approximation for 0mln will yield a good approxi- 
mation for the parameters, as long as 0mi. is 
a smooth function in parameter  space. 

This is the procedure performed in Ref. [5]: an 
ansatz for 0mi,, described by characteristic para- 
meters, was used and the parameters determined by 
minimization. The occurrence of the same expres- 
sions for elastic energy and distribution function of 
6i as derived in the present approach, as far as 

interference effects between different impurities can 
be neglected, indicates that the ansatz for indi- 
vidual pinning was - with some restrictions 
- a good choice. The restrictions lie in the fact that 
- contrary to the energy functional used in this 
paper - the internal Coulomb interaction was ne- 
glected in Ref. [5], replacing the Thomas-Fermi  
screening length in Ell by the amplitude coherence 
length. 

Besides the ansatz of individual pinning, sup- 
ported also by the + 2kv / - -  2kF asymmetry (X-ray 
"white line" effect [10]) requiring a local phase 
distortion at the impurity sites, in Ref. [5] also 
weak pinning was generalized to collective pinning. 
Whether this approximation can be justified in the 
same way as individual pinning should be investi- 
gated in future work, solving Eq. (19) for large 
values of a, i.e. for small coupling of impurities to 
the C D W  phase. 
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