PHYS 100C Midterm, Thursday May 14, 8AM-9AM (1 hour).

Problem 9.2 Show that the standing wave $f(z, t) = A \sin(kz) \cos(kvt)$ satisfies the wave equation, and express it as the sum of a wave traveling to the left and a wave traveling to the right (Eq. 9.6).

Problem 9.25 Assuming negligible damping ($\gamma_j = 0$), calculate the group velocity ($v_g = d\omega/dk$) of the waves described by Eqs. 9.166 and 9.169. Show that $v_g < c$, even when v > c.

Problem 10.4 Suppose V = 0 and $\mathbf{A} = A_0 \sin(kx - \omega t) \hat{\mathbf{y}}$, where A_0, ω , and k are constants. Find E and B, and check that they satisfy Maxwell's equations in vacuum. What condition must you impose on ω and k?

Problem 10.19

(a) Use Eq. 10.68 to calculate the electric field a distance d from an infinite straight wire carrying a uniform line charge λ , moving at a constant speed v down the wire.

(b) Use Eq. 10.69 to find the magnetic field of this wire.

Hint:
$$\int_{X_1}^{X_2} \frac{dx}{(1+\alpha x^2)^{3/2}} = \frac{x}{\sqrt{1+\alpha x^2}} \Big|_{X_1}^{X_2}$$