GMR Read head

Eric Fullerton ECE, CMRR

Introduction to recording Basic GMR sensor Next generation heads TMR, CPP-GMR Challenges

Product scaling

2 kbits/in² 70 kbits/s 50x 24 in dia disks \$10,000/Mbyte 130 Gbits/in²
630 Mb/s
2 x 2.5"glass disks
<\$0.01/Mbyte

Microdrive 78 Gbits/in² 1 x 1" dia disk

Areal density trends

Recording basics

Magnetic recording components

Magnetic recording components

Magnetic recording components

Recording basics

Recording basics

Magnetic resolution

signal

Anisotropic Magneto-resistance (AMR)

Bulk property of magnetic materials

AMR Sensor

Giant Magneto-resistance (GMR)

low resistance

Interface property of magnetic materials

Baibich et al. Phys. Rev. Lett. 61 2472 (1988) Binasch et al. Phys. Rev. B 39, 4828 (1989); P. Grunberg, U.S. patent # 4,949,039 14

GMR sensors and scaling

Track of data

>The reference ferromagnetic layer magnetization is pinned by an antiferromagnetic layer and does not rotate in small magnetic fields

Pinned layer is AP pinned to obtain flux closure to minimize magneto-static coupling to free layer

Utilize AP coupling property of Ru, Ir...

2) Ion Mill, then IBD HB/leads

3) Lift-off Resist

GMR sensors and scaling

State-of-the-art magnetic hard disk drives I. R. McFadyen, E. E. Fullerton and M. J. Carey, MRS Bulletin **31**, 379 (2006).

sensor

- The <u>height</u> of the sensor is controlled by lapping (polishing) <u>not</u> by lithography.
- \rightarrow The smallest feature in a thin film head is determined mechanically

25

GMR read head

Works great, what's the problem

 ΔR not increasing R increasing Shorting to the shields Edge damage for small features

New sensor geometry

CPP sensor

Sensor deposition

Photo/Ion mill

Insulator/hard bias deposition/Insulator deposition

Key goals:	- Smooth substrate+underlayers
	- continuous ultrathin barrier growth
	- Stable chemistry @ barrier interfaces
	- No shunting of barrier during lithography

The resistance of the device depends on RA product

R (per unit area) depends exponentially on the barrier thickness

A is set by size of the bits (decreases with time).

To keep the resistance of the device constant you need to thin the barrier over time (or find lower R barrier materials).

CoFeB/MgO/CoFeB

Y. Nagamine et al. (Anelva corp.) Intermag '06

In absence of low RA tunnel barrier move to metal devices.

CIP-GMR Shunting effect limits maximum signal

Want high resistance high spin polarized materials

Maat et al., JAP

e.g. NiMnSb, CrFeAl, ...

Hirohata et al., Current Opinion in Solid State and Mat. Sci. **10**, 93 (2006).

Compared to TMR, CPP GMR has lower R, ΔR & $\Delta R/R$

So how to get a signal?

```
Current: > 10^8 \text{ A/cm}^2
```

```
Heating
Electromigration
Spin - transfer torques
```

Spin transport

$R \sim R_0 + \Delta R (1 - \cos(\theta))$ GMR metallic TMR insulator

Spin transfer effect

- J. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996)
- L. Berger, Phys. Rev. B 54, 9353 (1996)

- Current polarized by F1
- Transfer of spin angular momentum to M

•
$$\mathcal{J}\sim 10^7 \text{ A/cm}^2$$

$$\vec{T}_I = \frac{\omega_t}{M_0} \vec{M} \times (\vec{p} \times \vec{M})$$

Magnetization dynamics

(negative friction)

Magnetization dynamics

$$I_{C}^{P-AP} \approx \frac{A \alpha M_{S} V}{g(0) p} \left(H + H_{dip} + H_{K//} + 2\pi M_{S}\right)$$

Smith and Arnett, APL 78, 1448 (2001).

Sensors need a lot of properties not just $\Delta R/R$

Opportunities for new materials and new phenomena

Non-magnetic magnetic sensors

Metal dot embedded in high mobility low carrier density semiconductor (i.e. InSb).

At low field E is _|_ to metal/SC boundary and j follows $E \rightarrow Iow R$.

At high fields because of the Lorentz force the angle between j and E can approach 90 degrees with little current flowing through metal \rightarrow high R.

Attractive because immune from magnoise, spin-torque
However geometry is challenging for a slider-type sensor

Solin, APL 80, 4012 (2001)

