PHYS-100C, Homework #6, due Thursday, May 21st.

Problem 11.9 An insulating circular ring (radius b) lies in the xy plane, centered at the origin. It carries a linear charge density $\lambda = \lambda_0 \sin \phi$, where λ_0 is constant and ϕ is the usual azimuthal angle. The ring is now set spinning at a constant angular velocity ω about the z axis. Calculate the power radiated.

Problem 11.10 An electron is released from rest and falls under the influence of gravity. In the first centimeter, what fraction of the potential energy lost is radiated away?

Problem 11.13

- (a) Suppose an electron decelerated at a constant rate a from some initial velocity v_0 down to zero. What fraction of its initial kinetic energy is lost to radiation? (The rest is absorbed by whatever mechanism keeps the acceleration constant.) Assume $v_0 \ll c$ so that the Larmor formula can be used.
- (b) To get a sense of the numbers involved, suppose the initial velocity is thermal (around 10⁵ m/s) and the distance the electron goes is 30 Å. What can you conclude about radiation losses for the electrons in an ordinary conductor?

Problem 11.16 In Ex. 11.3 we assumed the velocity and acceleration were (instantaneously, at least) collinear. Carry out the same analysis for the case where they are perpendicular. Choose your axes so that \mathbf{v} lies along the z axis and \mathbf{a} along the x axis (Fig. 11.15), so that $\mathbf{v} = v\,\hat{\mathbf{z}}$, $\mathbf{a} = a\,\hat{\mathbf{x}}$, and $\hat{\mathbf{z}} = \sin\theta\cos\phi\,\hat{\mathbf{x}} + \sin\theta\sin\phi\,\hat{\mathbf{y}} + \cos\theta\,\hat{\mathbf{z}}$. Check that P is consistent with the Liénard formula. [Answer:

$$\frac{dP}{d\Omega} = \frac{\mu_0 q^2 a^2}{16\pi^2 c} \frac{\left[(1 - \beta \cos \theta)^2 - (1 - \beta^2) \sin^2 \theta \cos^2 \phi \right]}{(1 - \beta \cos \theta)^5}. \quad P = \frac{\mu_0 q^2 a^2 \gamma^4}{6\pi c}.$$

Problem 11.25 When a charged particle approaches (or leaves) a conducting surface, radiation is emitted, associated with the changing electric dipole moment of the charge and its image. If the particle has mass m and charge q, find the total radiated power, as a function of its height z above the plane. [Answer: $(\mu_0 cq^2/4\pi)^3/6m^2z^4$]