PHYSICS 100C Final Exam, Thursday, June 7, 8AM-11AM

1. A loop of radius R has "glued" linear charge density distribution as a function of azimuthal angle φ, $\rho(\varphi)=\rho_{0} \cos ^{2} \varphi$. The loop is spinning with angular frequency ω. Find retarder potentials (in Lorentz gauge) A and V at the center of the loop.
2. Show that the x-rays (for which frequency much greater than resonance frequencies typically in UV range $\omega \gg \omega_{\mathrm{j}}$) have an index of refraction less than 1 , and estimate the angle of total internal reflection for 10 KeV x-rays incident on vacuum/metal interface at a grazing incidence. You may assume $\mathrm{N}=10^{30}$ "free" electrons per m^{3} in a metal.
3. a) A loop of radius R (yes, yet another spinning charged loop problem!) is centered at ($0,0,0$) and is oriented in x - y plane as shown on the Fig. 1. Upper half of the loop has "glued" uniform linear charge density $+\rho$, and bottom half of the loop has linear charge density $-\rho$.

Find total power radiated if the loop is spinning around its axis (with respect to z axis) at angular frequency ω.
b) How would the answer change if the loop is instead spinning around x axis (at the same frequency)? How about if it was spinning around y axis?
4. a) Electric and magnetic fields at some region of space are given by two vectors, \mathbf{E} and \mathbf{B}, such as \mathbf{E} \perp B. Show that there always exists a frame of reference in which $\mathbf{B}=0$, and find its velocity (direction and magnitude), as well as the resulting electric field \mathbf{E} ' in this frame of reference.
b) Show that for two arbitrary (no longer mutually perpendicular) vectors \mathbf{E} and \mathbf{B}, their scalar product $\mathbf{E} \cdot \mathbf{B}$ is relativistically-invariant. Comment on existence of frame of reference found in a) when \mathbf{E} and \mathbf{B} are not perpendicular.
5. Large Hadron Collider is set to collide two beams of protons travelling at the same speed in opposite directions with energy of 7 TeV per proton (in the laboratory frame). What is the energy of oncoming protons in the frame of reference of one of the beams? (Take rest mass of a proton to be 1 GeV).

