Problem 9.3 Use Eq. 9.19 to determine A_3 and δ_3 in terms of A_1 , A_2 , δ_1 , and δ_2 . **Problem 9.5** Suppose you send an incident wave of specified shape, $g_I(z - v_1 t)$, down string number 1. It gives rise to a reflected wave, $h_R(z + v_1 t)$, and a transmitted wave, $g_T(z - v_2 t)$. By imposing the boundary conditions 9.26 and 9.27, find h_R and g_T . **Problem 9.9** Write down the (real) electric and magnetic fields for a monochromatic plane wave of amplitude E_0 , frequency ω , and phase angle zero that is (a) traveling in the negative x direction and polarized in the z direction; (b) traveling in the direction from the origin to the point (1, 1, 1), with polarization parallel to the x z plane. In each case, sketch the wave, and give the explicit Cartesian components of \mathbf{k} and $\hat{\mathbf{n}}$. **Problem 9.10** The intensity of sunlight hitting the earth is about 1300 W/m². If sunlight strikes a perfect absorber, what pressure does it exert? How about a perfect reflector? What fraction of atmospheric pressure does this amount to? **Problem 9.15** Suppose $Ae^{iax} + Be^{ibx} = Ce^{icx}$, for some nonzero constants A, B, C, a, b. c, and for all x. Prove that a = b = c and A + B = C.