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A complete theoretical model is constructed to characterize the pinning of charge-density waves
(CDW?’s) to individual impurity sites. The model is based upon consistently incorporating the mi-
croscopic CDW-impurity interaction calculated by Tiitté and Zawadowski within the large-scale
Ginzburg-Landau framework of Lee and Rice. This analysis shows that the local CDW pinning by
impurities will always be strong for all realistic values of the scattering parameter. On the other
hand, the large-scale average CDW phase away from the impurity sites will be weakly pinned over
extended volumes containing a great many individual impurities, in nominally “pure” crystals. This
interplay between “weak” and “strong” aspects of the impurity pinning is found to explain most
features of the experimental phenomenology, including the remarkable behavior seen in the broad-
band 1/f-type noise spectrum above the depinning threshold.

I. INTRODUCTION

Charge-density-wave (CDW) conduction in quasi-one-
dimensional metals represents the only known example of
collective electron transport by a moving quantum
ground state, apart from superconductivity. -Since Mon-
ceau et al.! first observed the non-Ohmic behavior of
NbSe; in 1976, this new conduction mechanism has at-
tracted a great deal of interest, both experimental and
theoretical. The experimental phenomenology has
proved to be especially complex,? and a satisfactory
theoretical interpretation has been very difficult to find.
Enormous controversy has, in fact, permeated this entire
field for several years, surrounding such issues as whether
the impurity pinning should be taken as ‘“‘weak” or
“strong,” quantum or classical. It now appears that a
clear resolution of many of these basic issues is possible
by combining two previous bodies of theoretical work.
The first is the large-scale Ginzburg-Landau picture of
CDW pinning put forward many years ago by Fukuya-
ma, Lee, and Rice,>* The second is the more recent mi-
croscopic calculation of the local impurity-CDW interac-
tion by Tiitté and Zawadowski.> What remains is to con-
sistently incorporate this microscopic calculation within
the three-dimensional Ginzburg-Landau framework. In
carrying out this procedure, we shall make several rough
approximations that are consistent with solving the phys-
ical problem to within factors of ~2 or so, but not with
mathematical artistry.

The basic result which emerges from this analysis is
that the impurity pinning can always be represented as
“strong,” in the sense that the local CDW phase at the
impurity site will remain close to its optimal value under
most conditions. When the phase displacement in the
surrounding region becomes sufficiently large, however,
the amplitude of the order parameter is reduced within
the immediate neighborhood of the impurity, eventually
resulting in an advancement of the local phase through
the process of phase slip. This type of local strong pin-
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ning is expected for virtually any impurity located on the
metal sites of the CDW conducting chains, whether it is
isoelectronic or not. The phase gradients surrounding
each impurity site are confined to a very tiny volume in
three dimensions, however, according to Ginzburg-
Landau theory. The large-scale average CDW phase
away from the impurity sites is thus predicted to remain
correlated over rather large volumes, containing in excess
of ~100 individual impurities for the dilute concentra-
tions typical of nominally “pure” materials. The low-
frequency ac response measured in equilibrium is there-
fore expected to be similar to “weak” pinning, since each
individual impurity site does not dictate the value of the
large-scale average phase.

In a previous work® based on the Ginzburg-Landau
picture, we have proposed a phenomenological model for
CDW dynamics by starting from the a priori assumption
of strong pinning and phase slip at the individual impuri-
ty sites. This model and its subsequent extentions’ °
have succeeded in providing a logically coherent and
semiquantitative interpretation for the vast majority of
experimental behavior observed in sliding CDW systems.
The primary goal of the present work is to illustrate the
microscopic basis for this model.

One of the last experimental areas that has not thus far
been interpreted in terms of our strong-pinning model is
the broadband 1/f-type noise spectrum that appears
when the CDW is in the sliding state above threshold. A
series of recent experiments by Bhattacharya and co-
workers!®™!? has uncovered several unusual, and initially
very surprising, features of both the broadband noise
(BBN) and the associated narrow-band noise (NBN).
These results place serious constraints upon any theoreti-
cal interpretation of .CDW dynamics. Our strong-
pinning model naturally accounts for all major features of
the observed noise spectrum, and this area provides an
excellent opportunity to illustrate the relationship be-
tween the “‘strong” local impurity pinning and the
“weak’’ large-volume dynamics displayed by the system.
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II. MICROSCOPIC IMPURITY-CDW
INTERACTION

In an important recent paper, Tiitté and Zawadowski®
have demonstrated that the local interaction between the
CDW and an individual impurity cannot be adequately
described within Ginzburg-Landau theory. Their micro-
scopic calculation shows that Friedel oscillations, having
the same wavelength as the CDW, compete with the
CDW’s charge modulation over an atomic distance scale
xo~10 A at the impurity site. If the impurity potential
is sufficiently strong, these Friedel oscillations dominate
the charge modulation within this highly localized re-
gion, and the phase of the Friedel oscillations becomes
locked to its optimum value at the impurity site as illus-
trated in Fig. 1. The CDW, on the other hand, dom-
inates the charge modulation at distances x >>§, far
away from the impurity, where &,=#vp/A~30 A
represents the Ginzburg-Landau amplitude coherence
length. The force acting between the impurity and the
CDW is then determined by the energy of mismatch
within the region xy <x <&, as indicated by the dotted
line in Fig. 1. :

For simplicity, Tiutté6 and Zawadowski include only
electron backscattering within their one-dimensional cal-
culation. The perturbing Hamiltonian for a single impur-
ity located at the origin is thus represented in the form

Hipnp =TI (009, (0)+ 4] (09 (0)] . @.1)

Here, R and L refer to right- and left-moving electron
states, respectively. The CDW in the absence of impuri-
ties is described in terms of an effective Frohlich Hamil-

tonian, with an equilibrium Peierls gap given by
A=~2D exp(—1/sg) . (2.2)

The electronic bandwidth cutoff is here represented by D,
and s =2 when both spin components are included. The
dimensionless electron-phonon coupling is given by
&= —g(2ky)/2mvg in the usual notation.
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FIG. 1. Schematic plot of the electron density in the atomic
neighborhood of an impurity site. The region of mismatch be-
tween the Friedel oscillations at the impurity location and the
CDW’s charge modulation at distances x >>x,~ 10 A away
from the impurity is indicated by the dashed line. Reproduced
from Tiitté and Zawadowski (Ref. 5).
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The numerical value of the electron-phonon coupling is
s§~0.2 for all the inorganic sliding CDW materials.
With this estimate, the impurity-CDW pinning force cal-
culated by Tiitté and Zawadowski, and represented in
Egs. (6.9), (6.10), and Fig. 13 of their paper, may be ap-
proximately written in terms of an effective impurity po-
tential in the form

Vimp = —MAc0s(¢o—¢;) .

In this expression, the amplitude and phase of the CDW
within the immediate neighborhood |x| << &, of the im-
purity site are represented by A, and ¢, respectively, and
¢, is the optimal CDW phase, coincident with that of the
Friedel oscillations. The strength of the impurity pinning
is found to depend upon the dimensionless backscattering
within this model according to

(2.3)

6.4(T /2%vg), T/2%vp<<1
n=14, T/ 2%hvp=1 (2.4)
2, T/2fwp>>1.
In the neighborhood of T /2%vp~1, Tiitté and

Zawadowski find that the effective potential becomes
somewhat nonsinusoidal, as may be seen in their Fig. 13.
We shall ignore this slight complication in the following
discussion for the sake of simplicity.

In the weak-coupling limit, 7' /2#v, <<1, the CDW is
only slightly distorted by the impurity, and the phase &
of the charge modulation at the impurity site advances
contiuosly along with the CDW’s phase displacement ¢,
as illustrated in Fig. 2 for T'/2#v;=0.04 (after Tiitt6 and
Zawadowski). For larger values of the backscattering,
however, the charge modulation at the impurity site be-
comes fixed by the Friedel oscillations. Figure 2 shows
that already for 7' /2%iv;=0.08, the phase of the charge
modulation oscillates about its preferred value instead of
following the CDW’s displacement. Tiittd and
Zawadowski estimate that the backscattering parameter
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FIG. 2. Phase ® of the charge modulation at the impurity
site as a function of the local CDW phase ¢,, for different values
of the dimensionless electron backscattering parameter. Repro-
duced from Tiitté and Zawadowski (Ref. 5).
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will lie within the range 0.1 < T /2%vy <1 for typical im-
purities in sliding CDW systems, so that the Friedel oscil-
lations are always expected to dominate the CDW charge
modulation on an atomic scale near the impurity site.

An independent numerical estimate for the back-
scattering parameter can be made here by representing
the impurity potential as a squarelike barrier of height V'
and width d, so that T = Vd may be written in the form

T _o g Y(eVidA)

~ . (2.5)
2fvp vp(10" cms™1)

The effective width of the barrier should be roughly com-
parable to the lattice constant, a =3.5 A for all the com-
mon sliding CDW materials. The Fermi velocity for
NbSe, is universally estimated'* as vy~3X10" cms™},
and within a factor of ~2 or so of this value for the other
sliding CDW materials. Use of these estimates in Eq.
(2.5) yields T /2#%v;=0.9¥(eV), so that the dimensionless
backscattering is approximately equal to the effective bar-
rier height in electron volts.

In most sliding CDW systems, the electronic band
structure can be well represented by a one-dimensional
tight-binding band composed of d_, orbitals located on
the transition-metal ions. For these materials, the
effective 1mpur1ty barrier may be simply estimated as the
difference in atomic d-level energies, using Harrison’s'®
Solid State Table, for example. The most common im-
purity in NbSe; is Ta, which is known to be present in
~100-ppm concentrations within the starting materials
used in growing typical crystals.!® For these two metals
8E;=0.46 eV, so that our estimate for the backscattering
based on Eq. (2.5) becomes T /2%ivp~0.4 in this case.
Larger values are, of course, expected for nonisolectronic
impurities such as Ti. Our estimates here are thus in
good agreement with the range of backscattering parame-
ters anticipated by Tiitté and Zawadowski. We also note
that the present estimate 7' /2%iv; =~0.4 for a Ta impurity
on a Nb site (or a Nb impurity on a Ta site) is nearly an
order of magnitude larger than the minimum value re-
quired in order for the Friedel oscillations to dominate
the charge modulation at the impurity, according to Fig.
2.

III. INTEGRATION INTO THE
GINZBURG-LANDAU FRAMEWORK

The microscopic impurity-CDW interaction calculated
by Tiitté and Zawadowski describes only the local pertur-
bation of the CDW in the immediate atomic neighbor-
hood |x| <<£,~30 A of the impurity site. The long-
range deformations on a scale larger than £, must be cal-
culated using Ginzburg-Landau theory, as originally out-
lined for three dimensions by Lee and Rice.* In their
1979 paper, Lee and Rice estimated the elastic energy of
deformation that occurs when the CDW phase ¢, near a
single strong impurity site differs from the phase ¢ estab-
lished at infinity:

A —
Ejn~—— (o) . 3.1)
T

The numerical coefficient appearing here has been ob-
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tained during the course of our previous work,® and is
smaller by a factor of ~4 than in the Lee and Rice paper
due to a more careful treatment of the crystal anisotropy.
Phase gradients surrounding the single strong impurity
site are found to be confined to the smallest possible
volume in three dimensions: to a longitudinal distance
L,~7&, along the chain direction, and to the cross-
sectional area A of the individual chain containing the
impurity.

When a dilute concentration of strong impurities is
present, we previously demonstrated that the large-scale
average phase ¢ will remain correlated over extended
volumes containing a large number of individual impurity
sites, with small independent phase-gradient regions sur-
rounding each impurity. The length of this phase-
coherent region was estimated to be approximately given
by the mean spacing, L =1/n; Ay, between consecutive
impurities along the conducting chains.  Since
L /a=10%/n,(ppm) and a~3.5 A, a typical value L =1
um corresponds to n; =350 ppm. In cross section, aver-
age phase coherence should extend over distances at least
as large as the nearest-neighbor impurity spacing,
(L /a)1/3A 172 in the transverse directions. According to
these estlmates, the minimum number of impurities
within a single phase-coherent region is approximately
given by

N,;~(L /a)**~200[L (um)]*”* . (3.2)

Only at very high impurity concentrations n;> 10000
ppm, where the small individual phase-gradient regions
begin to overlap, will it become energetically favorable to
smoothly interpolate the CDW’s phase over the volume
scale n;” ! associated with a single impurity. This result
was used as the starting point for our previous work on a
phenomenological model for CDW dynamics, based on
the assumption that the local impurity pinning may
indeed be taken as strong and not weak. Prior to our
work, the possibility that strong pinning could produce
two qualitatively different overall phase configurations,
depending upon impurity density, was very nicely de-
scribed by in a paper by Abe!’ that has only recently
come to our attention.

Returning now to the problem of a single isolated im-
purity, we can combine the result of Titté and
Zawadowski for the impurity-CDW interaction , approxi-
mately given in Eq. (2.3), with the Ginzburg-Landau ex-
pression for the elastic energy of the local phase gra-
dients, given in Eq. (3.1). In doing this, it is important to
recognize that the CDW’s amplitude A, at the impurity
site will depend upon the magnitude of the surrounding
phase gradients. If the impurity potential is sufficiently
strong, large phase gradients can develop to the point
where the CDW amplitude becomes depressed toward
zero within a region ~ £, about the impurity site, initiat-
ing a phase-slip process. In the Appendix we have es-
timated that this depress1on of the CDW order parameter
may be approximated in the form

(3.3)
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where O=L,/§,=7 according to Ginzburg-Landau
theory. Combining Egs. (2.3) and (3.1) then yields a total
impurity pinning energy:

E g = %kelast ( $_ ¢0 )2

(F—o)?
—k 1-—‘*;—?9— cosdo—a;) . (3.4)

imp

The impact of amplitude suppression on the elastic ener-
gy in Eq. (3.1) is of order [(¢—a,)/O]*, and is neglected
here for simplicity. According to Eq. (3.1), the elastic
constant associated with the phase-gradient region is ap-
proximately given by k. ~A/27%, and the strength of
the CDW-impurity interaction, kimp =nA, may be es-
timated from the microscopic theory according to Eq.
(2.4). .

At zero temperature, the CDW phase ¢, at the impuri-
ty site adjusts itself to minimize this total energy, yielding
the condition

(6 —¢0)
- 2

1 sin(¢o—¢;)

2 Y ’
=62—(¢—¢0)[k +cos(¢g—¢;)] . (3.5
The behavior obtained within this model depends pri-
marily upon the dimensionless ratio of elastic constants:

_ 0%

, elast
k 2k

(3.6)
imp

In the limit k' >>0? or kg, >>Kimp, the impurity poten-
tial is small compared to the phase-gradient energy and
the pinning will be “weak.” The CDW phase ¢, at the
impurity site closely follows the phase displacement ¢ at
large distances in this case, with only very small devia-
tions (¢ — o) = (Kimp /K ejast )sin(do— ;) due to the impur-
ity potential. When k’=<1, on the other hand, the local
impurity interaction is sufficiently strong to cause phase
slip at the impurity site as the CDW phase ¢ at large dis-
tances is continuously advanced.

For simplicity in what follows we shall take © =2, in
rough agreement with the Ginzburg-Landau estimate
quoted above. The expected range 0.1 < T /2%vz <1 of
the backscattering parameter within the Tutté and
Zawadowski theory then implies a corresponding range
for the dimensionless elastic constant given by

0.25<k'=1.5. (3.7

Our numerical estimate of T'/2%v;~0.4 for a Ta impuri-
ty on a Nb site leads to the value k'=1, and we shall
adopt this as representative in our subsequent numerical
work.

Let us begin by examining the predictions of this mod-
el for small displacements of the CDW phase away from
its optimal value. Linearizing Eq. (3.5) yields

_+__.._._....
62 kimp

~0.05(1+k" )¢ —¢y) ,

(¢0_¢i)z($_¢0)

2 kelast l
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where © =27 has been used in the final form. For k'=~1,
the CDW phase ¢, at the impurity site will be tightly
pinned to its optimal value ¢;, with (¢o—¢;)=0.1(d— )
according to these estimates. Deviations in the average
phase ¢ at large distances will thus produce very little
displacement in ¢, at the impurity site, with 90% of the
total difference (¢ —¢,) contained within the phase gra-
dients (¢ —¢,) surrounding the impurity site. We em-
phasize that in order to have “weak” pinning, the reverse
would have to be true. That is, the CDW’s phase ¢, at
the impurity site would need to remain close to the value
é established at large distances, so that ¢o—¢; >>é—d,
for small displacements. According to Eq. (3.8), this
would require a dimensionless elastic constant k’> 100.
Unless our numerical estimates are in error by more than
2 orders of magnitude, therefore, the present model leads
inescapably to the conclusion that the local impurity pin-
ning will indeed be “strong” and not “weak.”

The energy-minimization condition of Eq. (3.5) can be
substantially simplified for k'=1, the value estimated for
a Ta impurity on a Nb site, to yield

tan[(¢o‘¢i)/2]=67 [1_($—¢00)2/62] )

In this case, the total energy of Eq. (3.4) can also be
rewritten in a simplified form:

(6— )
- 2

(3.9)

Etota! =:)’kimp 1— |1

]COSZ[(¢0_¢i)/2]

(3.10)

In Fig. 3 we have plotted the results of our numerical
solution to Eq. (3.9), showing the local CDW phase dis-
placement (¢,—¢;) at the impurity site as a function of
the total phase dispacement (¢—¢;) at large distances.

FIG. 3. Local CDW phase displacement (¢,—¢;)/27 and
amplitude Ay/A at the impurity site as functions of the total
CDW phase displacement (¢ —¢;)/2 at large distances from
the impurity, calculated according to Egs. (3.9) and (3.3) with
k'=1and ©=2m.
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Also included in Fig. 3 is our estimate for the CDW’s
amplitude A, near the impurity site, calculated according
to Eq. (3.3). Figure 4 illustrates the resulting total pin-
ning energy, as given by Eq. (3.10). The absolute energy
scale here is 2k, =02k, ~2A for k'=1and ©=27.

The physical picture which emerges from this calcula-
tion is relatively easy to interpret. As the CDW phase ¢
at large distances becomes displaced from its optimum
value ¢;, the local CDW phase ¢, at the impurity site
remains tightly pinned. For total phase displacements
(6—¢;)/2m<0.6, the local deviation is only
bo— ¢, ~0.1(¢—¢,), and this eventually produces large
phase gradients in the region surrounding the impurity.
When (¢ —¢;)/2m~0.8, the CDW’s amplitude A, at the
impurity site has been reduced to ~1 of its equilibrium
value A, and the maximum restoring force has been
reached:
dE total

3¢
This result is larger by a factor of ~4 than our previous
crude estimate® for the maximum 7 =0 restoring force
due to a single impurity. Further displacements in the
CDW phase ¢ at large distances will rapidly advance the
local phase ¢, and depress the CDW’s amplitude A, at
the impurity site, leading to total amplitude collapse at
(p—¢;)/2m=1.5 for this particular set of parameters
(k'=1, ©=27). If we assume purely relaxational dy-
namics, as in time-dependent Ginzburg-Landau theory,
then the CDW order parameter will change sign as it
passes through zero, so that the phase will instantaneous-
ly advance through 7. This gives a local phase displace-
ment ¢o—¢; =2, and the CDW’s amplitude then re-
grows (almost instantaneously) in the optimum relative
phase configuration.

A remnant polarization (¢ —¢,) /27 =0.5 still remains,
however, so that subsequent motion of the CDW in the
same direction at 7'=0 produces a total effective pinning

(3.11)

] ~—0.37A .
max
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FIG. 4. Total CDW-impurity interaction energy under the
conditions illustrated in Fig. 3, calculated from Eq. (3.10) with
'=1and ©=2.

potential of the form sketched in Fig. 5. If the CDW
motion is reversed by applying an electric field of oppo-
site sign, then the initial current response will be
enhanced by the discharge and reestablishment of this
remnant polarization in the opposite direction. We pro-
pose this phenomenon as the source of the “overshoot”
effects first observed by Gill, !® and subsequently by many
others. Recent liquid-helium-temperature experiments!®
on K, ;3Mo00; have established that the magnitude of the
remnant polarization corresponds to a displacement of
the CDW through roughly 1 wavelength, in agreement
with the present model. All other observed features of
the remnant polarization and ‘“overshoot” phenomena
also appear consistent with the picture outlined here.

IV. dc MOTION OF THE CDW CONDENSATE

The detailed interaction of the CDW with an individu-
al impurity site has direct experimental consequences, in
addition to the remnant polarization discussed in the
preceding section. The most apparent of these is the
characteristic temperature dependence of the depinning
field. In all common sliding CDW materials, the average
depinning field takes on the following functional form
well below the Peierls transition:

Ey(T)=EyO)exp(—T/T,) . 4.1)

The temperature scale is found to lie in the range
T,~10-100 K, depending upon the material. In small
crystals of high quality, the minimum threshold field E
is approximately equal to E;, and thus shows the same
temperature dependence.?’ In less homogeneous samples
the minimum threshold field £ may assume a different
dependence, but the average depinning field inferred from
the complete dc I-V characteristic still follows the func-
tional form given in Eq. (4.1).%!

Etotal/EKiw
<~ ———————

0.0 1.5 2.5 3.5
($-4)
2T

FIG. 5. Sketch of the total CDW-impurity interaction energy
when the CDW’s phase ¢ at large distances is advanced con-
tinuously in the positive direction. A remnant polarization of 7
remains after each phase-slip event within this model for k’'=1
and ©=21.
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In our previous theoretical work,® we explained this
behavior in terms of independent thermal fluctuations
occurring within the local phase-gradient regions sur-
rounding each impurity site. The general nature of these
fluctuations is illustrated in Fig. 6. When the impurity
pinning is strong, as it will be in virtually all cases, the
important thermal fluctuations are effectively confined to
the neighborhood of these small phase-gradient regions.
The energy scale for fluctuations in the large-scale aver-
age phase ¢ will be greater by 1-2 orders of magnitude.

The equilibrium energy of the localized phase gradients
is estimated in Eq. (3.1). Crudely speaking, we can ap-
proximate the important thermal fluctuations as local
changes in the value of §—¢, near each site. For a
sinusoidal pinning potential V(¢)= —V,,cosd, the im-
pact of such fluctuations may be easily taken into account
according to a calculation given by Maki.??> Convolving
the sinusoidal form for the pinning energy with a Gauss-
ian distribution of width (¢?)=kzT/V,,, reduces the
maximum pinning potential by a factor of exp(—7/T,),
where T, =2V .,/kg. Although the actual pinning po-
tential is nonsinusoidal, we can approximate V_, ~A/
27? for small displacements to yield

To~A/10ky . 4.2)

This rough estimate has been shown to be in good numer-
ical agreement with experimental values for a variety of
materials.

The total pinning potential for a large phase-coherent
region will be approximately (N;)!/? times that for an in-
dividual site, where N; represents the total number of im-
purities contained within this region. The factor
exp(—T/T,) due to thermal fluctuations multiplies each
term within the random sum, and thus appears directly in
the overall pinning force. The fact that such a small tem-
perature scale controls the depinning over a large phase-
coherent region is a remarkable experimental finding,
which is easily explained within the context of our
strong-pinning model.

When the CDW becomes depinned above the threshold
field E;, the resulting dc motion at velocity v, is accom-
panied by current oscillations or ‘“narrow-band noise” at
the average drift frequency w,; =2k v, and its harmonics.

$(x)

imp X

FIG. 6. Sketch of local thermal fluctuations in the CDW’s
phase configuration near a strong-pinning site.
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We have previously shown® that the basic features of the
NBN can be reproduced by using a simple relaxation-
oscillator model, as illustrated in Fig. 7, to represent the
CDW polarization and depinning within a single phase-
coherent region. This relaxation-oscillator approach to
interpreting the NBN was originally proposed on empiri-
cal grounds several years ago by Weger, Griiner, and
Clark.?® By reinterpreting it within the context of our
strong-pinning model, we can relate the CDW’s drift fre-
quency w, in a dc field to the dielectric relaxation fre-
quency @, measured in ac-conductivity experiments:

OPETON EL—I exp(—Ey/E) . (4.3)

T

Here, w, is identified with the 1/RC time scale of the
relaxation-oscillator model, and E is proportional to the
breakdown voltage. An additional factor exp(—E,/E)
has been included to account for the field dependence of
CDW acceleration within a large phase-coherent region.®
This expression has been shown to yield accurate numeri-
cal estimates for the CDW drift frequency in a variety of
materials. At low temperatures, normal-carrier screen-
ing currents that are required in order to compensate for
CDW polarization charges come to dominate the dissipa-
tion involved in CDW motion. In this regime, the dielec-
tric relaxation frequency takes on an Arrehenius temper-
ature dependence due to the scarcity of uncondensed
electrons:
UN( T)

0~ 0 50) (4.4)

Here, opn(T)~exp(—A/kgT) represents the normal-
carrier conductance, and €(w—0) is the static dielectric
constant.

A wide range of experiments has been quantitatively
interpreted in terms of this simple relaxation-oscillator
picture of the dc dynamics. The CDW drift frequencies
observed at low temperatures are found to be accurately
represented by Egs. (4.3) and (4.4), displaying the Ar-
rhenius temperature dependence of the dielectric relaxa-
tion frequency for constant values of E/E;.” For rela-
tively large electric fields E >4E and drift frequencies

H C
o |
v || 1
4
\
Vbr= VT

FIG. 7. Relaxation-oscillator model for CDW polarization
and depinning within a single phase-coherent region, after
Weger, Griiner, and Clark (Ref. 23).
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®, > @y the NBN amplitude and harmonic content be-
come field independent, indicating a slightly non-
sinusoidal but approximately constant effective pinning
potential.?* At low drift frequencies w; <<®,, however,
the harmonic content of the NBN is dramatically
enhanced, reflecting the “jerky” motion expected in a re-
laxation oscillator just above threshold.

This “jerky” CDW motion for w; <<w, causes a
dramatic postponement in the motional narrowing of
the’>Nb NMR linewidth in NbSe;, as observed by Ross,
Wang, and Slichter.?> NbSe, is the only common sliding
CDW material whose Fermi surface remains incomplete-
ly gapped by the Peierls transition, so that there is always
an abundance of normal carriers and the dielectric relax-
ation frequency @,/27~ 10 MHz remains relatively large
and temperature independent. Motional narrowing of
the NMR line in NbSe; is observed to occur not at an
average dc drift frequency comparable to the static NMR
linewidth. Aw /27m~30 kHz, but at a much larger value
wy/2w=15 MHz near the dielectric relaxation frequen-
cy, and thus a factor of ~ 500 greater than would be ex-
pected for smooth CDW motion. In his Ph.D. thesis,
Ross?® attributed this striking effect to local motion of
the CDW in rapid “jumps” of precisely 27 in phase
separated by long stationary intervals, over the region
E <4E near threshold. Several additional experiments
were carried out to confirm that the CDW motion was
relatively uniform throughout the multicrystal NbSe,
sample used by Ross, Wang, and Slichter. The drift fre-
quency o, /27 =~15 MHz for onset of motional narrowing
was also measured as the peak in the NBN fundamental,
relacing the (lower) calculated estimate contained in the
published paper. The locally “jerky” CDW motion in-
ferred by Ross from his NbSe; NMR experiments is pre-
cisely that expected’ within the context of the
relaxation-oscillator model. There the current flows in
sharp, widely spaced pulses of width RC=1/w, at volt-
ages near threshold, so that the CDW’s motion should
only become continuous for average drift frequencies
W4 > @

NMR experiments on Rby ;M00; at low temperatures
40< T <60 K, on the other hand, appeared to show qual-
itatively different results.?’” In this material, the com-
pletely gapped Fermi surface leads to a very small
normal-carrier concentration within this temperature
range, so that the dielectric relaxation frequency
wo/2m=~(3.2X10° s Nexp( —829 K/T), as given by Eq.
(4.4), becomes smaller than the static ®Rb NMR
linewidth Aw/2m~10 kHz. Under these conditions, the
motional narrowing is found to occur at a CDW drift fre-
quency wy;/2m=5 kHz comparable to the static
linewidth. This behavior is also predicted by the
relaxation-oscillator model, however, since in this case a
dc drift frequency larger than the static linewidth already
exceeds the dielectric relaxation frequency, so that the
CDW motion should be relatively smooth in that regime.
The controversy associated with these two apparently
contradictory NMR results thus appears to be completely
resolved: both are correct and easily understood within
the context of the simple relaxation-oscillator model.
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According to our interpretation, it should also be pos-
sible to observe “jerky” CDW motion in Rby;Mo00; as
well, and this effect has recently been reported.?® At dc
current biases just above threshold, discrete voltage
pulses are seen within separate regions of a small
Rb, ;Mo00; crystal by employing multiple contacts. For
higher electric fields, these pulses become the quasi-
periodic current oscillations of the NBN. Near thresh-
old, however, the individual voltage pulses are observed
to propagate down the chain direction at a velocity of
~0.3 ms™! at a temperature of 77 K. This value for the
propagation velocity can be readily understood in terms
of the dielectric relaxation time 27 /w, needed in order to
readjust the CDW’s configuration over a phase-coherence
length L. Depinning of one region should result in a
“domino effect,” with the moving portion advancing at a
speed approximately given by Lw,/27w. Our numerical
estimate’ quoted above for Rb, ;sMoO; gives a dielectric
relaxation frequency wy/2w=67 kHz at T =77 K. The
relatively long phase-coherence length L =4 um in blue
bronze at low temperatures’ thus implies a propagation
velocity of ~0.3 m s™! at 77 K, in precise agreement
with experiment. This propagation velocity is also found
to follow an Arrhenius dependence as a function of tem-
perature, with an activation temperature equal to that of
the dielectric relaxation frequency within the accuracy of
the measurements.

The dielectric relaxation frequency w,/27~67 kHz at
77 K in Rb, ;M00; is much larger than the ’Rb NMR
linewidth Aw /27~ 10 kHz, in contrast to the situation at
lower temperature 40 < T <60 K discussed above. Here
motional narrowing of the NMR line should therefore be
postponed by the locally “jerky” motion of the CDW
near threshold, just as in NbSe;. Indeed, the onset of
motional narrowing at 77 K in Rby ;M00; has been re-
ported? near a drift frequency w, /27~ 70 kHz, approxi-
mately equal to the dielectric relaxation frequency as ex-
pected according to our model.

The simple relaxation-oscillator model for local CDW
motion within a phase-coherent region has thus allowed
us to successfully interpret a very wide range of experi-
mental phenomena associated with dc motion and the
NBN. Recent work by Strogatz, Marcus, Westervelt,
and Mirollo® indicates that many remaining aspects of
the dc motion can be understood in terms of the collec-
tive behavior displayed by large numbers of such regions
that are coupled together. While these collective effects
are extremely interesting from the viewpoint of nonlinear
dynamics, they reflect only indirectly on the microscopic
interaction of the CDW with an individual impurity site.
Fortunately, there is one additional feature of the dc
CDW motion that displays the microscopic impurity pin-
ning rather directly: the 1/f-type “broadband noise”
that is always observed as a low-frequency background to
the NBN current oscillations.

V. ORIGIN OF THE BROADBAND NOISE

Broadband 1/f-type noise is a generic phenomenon
observed in a wide variety of electronic systems. The de-



5454

pinning of a sliding CDW is observed to produce a very
large BBN signal compared to systems involving only
single-electron transport. While enormous compared to
these more familiar sources of 1/f-type noise, the BBN
in CDW systems appears experimentally as a wide-
spectrum background at frequencies near and below the
discrete NBN peaks associated with the CDW ‘“wash-
board” frequency. Although the BBN has been seen in
CDW systems for many years, it is only through relative-
ly recent experiments by Bhattacharya and co-
workers'©™13 that the fascinating systematics of this
phenomenon have been revealed. Here we shall briefly
summarize the important experimental findings, and then
offer our detailed interpretation.

In their initial study of the BBN, Bhattacharya et al.!®
reached the following conclusions: (1) the onset of the
BBN is coincident with the onset of CDW motion, (2) the
root-mean-square BBN voltage §V(w) displays an o™ ¢
‘spectrum approximately independent of electric field ex-
cept near threshold, with a~=0.7 for typical o-TaS; crys-
tals, (3) the BBN noise voltage 8V (w) scales as (I/A4)'/?,
where / is the sample length and A4 the cross-sectional
area, so that 8V2/V?2 scales as the inverse volume. This
result implies that the BBN is generated throughout the
bulk, and not at the surface or contacts. The most im-
portant result obtained in this study was a clear demon-
stration that the observed BBN can be related to field-
independent fluctuations in the overall threshold voltage
Vr. In experiments at constant total current I, any fluc-
tuations in ¥ will cause changes in the total resistance
R =V /I of the sample, so that this mechanism should
produce a noise voltage given by

2
3R )
T (8V2w)) .

(8Viw)),;=1I* (5.1)

Assuming that R is a function of V' — ¥V only, dR /dV
can be replaced with —9dR /8V and numerically evalu-
ated from the dc I-V characteristic. Detailed compar-
isons of the BBN voltage 6V (w), measured at low fre-
quencies, with the quantity 7 (3R /9V) showed that they
are virtually identical functions of both temperature and
electric field. Bhattacharya et al. thus concluded that
the BBN must be caused by fluctuations in the threshold
voltage that are approximately independent of the experi-
mental conditions. In view of their bulk origin, these
threshold fluctuations were written in the form

2
(8V%(w))=%$(w, T, (5.2)
where N = Al /A3 represents the total number of phase-
coherent regions of volume A’ contained within the sam-
ple. S(w,T) is a spectral weight factor whose functional
form may depend upon temperature.

A second paper by Bhattacharya et al.!! studied the
NBN in detail, and determined the frequency and ampli-
tude probability distributions for typical NBN peaks in
the presence and absence of mode locking to an external-
ly applied ac signal. Their basic conclusion here was that
the finite spectral width of the NBN results (in good crys-
tals) from temporal fluctuations in the local CDW drift
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frequency, and not from static spatial variations as had
previously been supposed. Moreover, the width of the
NBN peaks and the amplitude of the BBN were observed
to track each other closely under a variety of experimen-
tal conditions, and from one material to another. They
noted that for a constant dc current I =I.pw+V /Ry
applied to the sample, the BBN amplitude may be written
in the form

(8VHw)) ;=RE(S8ILpy (@)
2

(8Viw)) .

Ry

R, (5.3)

Here, Ry is the normal resistance due to uncondensed
electrons, and R, =dV /dI represents the total dynamic
resistance at the dc bias point. The first relation here is
mathematically trivial, but it shows that the BBN results
directly from temporal fluctuations in the CDW current.
In other words, the BBN and the spectral width of the
NBN are one and the same. The second form of the rela-
tion is obtained within their phenomenological pinning-
force-fluctuation model. Changes in I-pyw are assumed
to result from fluctuations in the threshold voltage Vo,
and I -py is taken to be a function of ¥ — ¥V only.

The main features of the experimental phenomenology
were shown to be consistent with this interpretation. The
Q (=w,/Aw,) of the NBN peaks increases linearly along
with the average CDW drift frequency wy, since the fluc-
tuations in I.pw are approximately constant as a func-
tion of electric field far above threshold according to Eq.
(5.3). When the NBN is mode locked to an external ac
signal, the BBN is observed to vanish along with the
spectral width of the NBN peaks. According to Eq. (5.3),
the BBN vanishes on a mode-locked step not because the
source of the fluctuations goes away, but because fluctua-
tions in ¥ can no longer change the differential resis-
tance R; away from the normal resistance Ry so long as
the CDW drift frequency remains locked to an external
ac signal. In a subsequent and more detailed study of
mode locking, Bhattacharya et al.!> demonstrated that
noise-induced intermittency occurs as a precursor to
complete mode locking. Histograms of the most prob-
able washboard frequency over long time intervals
showed that the system tends to jump between competing
subharmonic steps, so that mode locking involves a com-
petition between the deterministic nonlinear dynamics
and the stochastic 1/f-type noise.

In their most recent study, Bhattacharya et al.!’ infer
a remarkable connection between the BBN observed
when the CDW is in the sliding state and the small-signal
ac conductivity measured in the pinned state. The dc
bias in these experiments is adjusted so that the NBN lies
entirely outside the range of their spectrum analyzer
(wgz>5 MHz), and the measured BBN spectrum is thus
essentially field indepenent. The following relationship of
the BBN amplitude to the pinned-state ac response is
then found to be approximately obeyed: '

Ime*(w) _ Reo(w)
2

SV(w)=8Vr(w)x (5.4)

« [0)
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The dielectric response function appearing here is defined
by e(w)=¢€y+0o(w)/iw. In typical o-TaS; samples at 120
K, the ac conductivity follows a power law well below the
dielectric relaxation frequency, with Reo(w)~o* and
x =~1.3. The BBN spectrum in this same region is found
to fall off as §V(w)~w % with —a=—0.7=x —2 as
predicted by the above relation. When the temperature is
lowered below ~140 K in these experiments, a broad
peak appears in o §V(w) within the measured spectral
range, as shown in Fig. 8. The position of this peak as a
function of temperature tracks the Arrhenius behavior of
the dielectric relaxation frequency g, experimentally
defined as the peak in Ime(w) and theoretically represent-
ed in Eq. (4.4). Above the broad peak near w,, the magni-
tude of w8V (w) falls off with increasing frequency, fol-
lowing the behavior previously observed in Ime(w).

The result contained in Eq. (5.4) is very extraordinary.
At first sight, it appears to be a simple fluctuation-
dissipation relation, but in this case the BBN spectrum
8V (w) is measured in the sliding state, while e(w) is mea-
sured in the pinned state. The clear implication is that
the CDW fluctuations that occur in the sliding state must
be very similar to those occurring in the pinned state. In
other words, the BBN spectrum indicates that the CDW
remains pinned even while it is moving.

Our contention here is that all of these features of the
BBN and NBN, so carefully extracted by Bhattacharya
and co-workers over the past few years, can be readily ex-
plained within the context of our strong-pinning model,
and that no other explanation appears plausible. The
general form of the above fluctuation-dissipation relation
is very easy to understand from this point of view. Ac-
cording to the picture of impurity pinning described in
Sec. III, the local CDW phase ¢, will remain strongly
pinned at each impurity site even while the large-scale
average phase ¢ is advancing, except for brief intervals
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FIG. 8. Broadband-noise spectrum multiplied by frequency,
oSy(w), for an o0-TaS; crystal current biased far above thresh-
old, so that the narrow-band noise lies beyond the frequency
range of the measurements. The ordinate at each temperature is
shifted for clarity. Solid lines are guides to the eye, and arrows
mark the location of the most probable relaxation frequency.
Reproduced from Bhattacharya et al. (Ref. 13).
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just before phase slip takes place. The basic features of
the overall CDW phase configuration will then be the
same in either the sliding state or the pinned state, with
essentially the same types of thermal fluctuations.

To begin a detailed analysis, we now return to our dis-
cussion of the temperature dependence of the average de-
pinning field, given in Eq. (4.1) of the preceding section.
There it was estimated that thermal fluctuations in the lo-
calized phase gradients surrounding each impurity site
are equivalent to a mean-square displacement {&8¢?)
~2T /T, in the potential of Eq. (3.1). This can be
translated into a root-mean-square (rms) fluctuating force
according to

dE;i,(¢)
8F,  ~2kp,—>——
rms F d¢ 4=50, .
A 172
=2kp—> | = - . .
Fom | T, exp(—T/T,) (5.5)

Adding random fluctuating forces from N; individual im-
purity sites within a phase-coherent region then yields an
estimate for the fluctuations in the total pinning force:

8F;~(N;)'/%8F,,, . (5.6)
The total threshold force needed to depin a region con-
taining N, impurities is roughly that imposed by the aver-
age depinning field:

2kp

FTzNi(AOL) ’ITAO

eEy(T) . (5.7)

Here, again, A4, represents the cross-sectional area per
CDW chain and L the average spacing between consecu-
tive impurities. The volume per impurity is then
n.'= A,L, and n.=2kg /7 A, represents the CDW car-
rier density well below the Peierls transition.

Dividing the above two quantities, the relative fluctua-
tions in the total pinning force for a single phase-

coherent region may be written in the form

SFT _ 1 A 21 172
Fr — (N,)V/2 2meE,(O)L | T,
172
T
=~ (5.8)

In the final expression, we have utilized our previous esti-
mate E,(0)~A /4eL(N;)!/? for the T =0 depinning field,
taken from Eq. (6.7) of Ref. 6. The result of Eq. (5.8) im-
plies that within a single phase-coherent region the mag-
nitude of the fluctuating force will roughly equal the net
pinning force at T=T,. Experimental crystals contain a
very large number N = Al /A? of phase-coherent regions,
however, so that the fluctuations in the overall threshold
voltage will be reduced by a factor of 1/V'N:

v, ~ VN ?0‘ flo,T) . (5.9)

Here we have included a spectral weight function f(w, T)
to indicate that the fluctuation spectrum must roll off
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above some frequency that may depend upon tempera-
ture. Except for the additional factor of (T/ TO)’/ 2 Eq.
(5.9) is seen to be identical to the empirical relation given
in Eq. (5.2). For the o0-TaS; crystals used in the experi-
ments of Bhattacharya et al., the characteristic tempera-
ture is approximately T,~70 K, so that the important
temperature dependence should be contained within the
spectral weight factor.

The form of the spectral weight function f (o, T) is dic-
tated by the fact that only low-frequency components of
the local fluctuations occurring at the individual impurity
sites will be effective in altering the value of the overall
threshold voltage. Fluctuations in the total pinning force
involve readjustments of the CDW’s configuration over
the volume of a phase-coherent region, and the time scale
for this is limited by the dielectric relaxation frequency.
If the dielectric response could be characterized by a sin-
gle relaxation time w; !, then the spectral weight function
would assume a simple Debye form:

2 1
7m0y [1+(w/wy)?]

folw, T)= (5.10)

The temperature enters here only through the Arrhenius
behavior of the dielectric relaxation frequency o, at
sufficiently low temperatures. In real crystals, of course,
there will be a broad distribution of relaxation times. In
our previous work,® we derived a reasonably accurate
representation for the low-frequency ac response by using
a distribution function P(w,)=(®, /w; Jexp(—, /w,)
for the pinning frequency w, about its average value
®,=mcy/L, where ¢, is the unpinned CDW phason ve-
locity. The form of this function is based upon a random
distribution P(I)=L ~'exp(—I/L) in the phase-
coherence length. Experimental results for o(w) were
reproduced over a wide spectral region by convolving the
distribution function P(w,) with the ac-conductivity ex-
pression for a single overdamped oscillator. While this
procedure produced a correct overall shape for o(w), the
very-low-frequency behavior Reo(w)~w'?  which
reflects the 1/f-type noise, cannot be modeled in such a
simple way.

We can proceed empirically, however, by noting that
the ac conductivity for the CDW, when represented as a
single overdamped oscillator, may be written

2
n.er 2
Reo(0)=————5"— . (5.11)
My (0l,tw®) -
Here the “crossover frequency” is defined by a)co=a)12,7',

where 7 represents the CDW damping parameter, and
M is the inertial Frohlich mass. For this single over-
damped oscillator, the dielectric relaxation frequency w,
defined as the maximum in Ime(w)=—Reo(w)/w, will
be coincident with the ‘“crossover frequency” ., that
marks the rise in the ac conductivity. The static dielec-
tric constant is approximately given by e(w—0)
~n.e?/Mrw?, so that the simple Debye relaxation spec-

P
trum of Eq. (5.10) may now be rewritten in the form

folo, T)~ —Regl@) (5.12)

wle(w—0)
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When there is a broad distribution of relaxation times, as
in real crystals, we should expect that this relationship
will still be approximately satisfied, since in this case it
represents a superposition in the linear ac response for a
distribution of oscillator strengths. With f(w, T) charac-
terized in terms of the measured ac conductivity by this
relation, our expression for the threshold fluctuations in
Eq. (5.9) becomes

T
TO

V.
Vo)~ —ae

12 Reo(w)
VN '

w?

(5.13)

Here, again, N = Al /A represents the total number of
phase-coherent regions within the sample. This result is
seen to be essentially identical to the experimental rela-
tions inferred by Bhattacharya et al., and quoted in Egs.
(5.2) and (5.4). The entire experimental phenomenology
associated with the BBN and NBN can thus be under-
stood in terms of strong impurity pinning, by employing
the approximate theoretical result of Eq. (5.13) within
their phenomenological pinning-force—fluctuation model.

It is important to note how easily our strong-pinning
theory accounts for all of the remarkable experimental
behavior seen in the BBN and NBN. Thermal fluctua-
tions in the localized phase gradients surrounding each
impurity site produce random forces, which add in-
coherently within large phase-coherent regions to pro-
duce fluctuations in the overall threshold voltage. The
spectrum of the localized fluctuations at the individual
impurity sites is effectively ‘‘white,” since the ac-
conductivity resonance associated with this length scale
is experimentally observed in the far infrared.® The spec-
tral dependence of the threshold fluctuations is then
determined by that of the dielectric response function,
which sets the time scale for distorting the CDW’s phase
configuration over large volumes. Because the local
phase remains pinned at each of the impurity sites even
while the CDW is moving, fluctuations in the threshold
voltage within the sliding state are approximately the
same as they are in the pinned state, independent of elec-
tric field. These fluctuations may therefore be inferred
from the equilibrium ac response through a fluctuation-
dissipation relation.

It is also important to appreaciate that the experimen-
tal phenomenology discussed here cannot be understood,
even qualitatively, in terms of a weak-pinning model.
With weak pinning, the CDW phase is not optimized at
each impurity site, but distorts gradually over a large
volume containing many impurities in order to reduce its
net potential energy. The scale of these gradual phase
distortions along the chain direction is given, in equilibri-
um, by the so-called “Lee-Rice length.” This Lee-Rice
length turns out to be inversely proportional to the im-
purity concentration, and within the notation of the
present paper it may be written in the form

2
elast

Lig~ (5.14)

k

imp

Here, L =1/n; A, again represents the average impurity
spacing along a single conducting chain. In Sec. II we
saw that weak pinning requires Kp,g >>Kkim,, s0O that
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L, >>L. When the CDW becomes depinned in an elec-
tric field, the maximum drift frequency w, at which it can
quasistatically optimize its phase configuration over the
length scale Ly will be approximately limited to the
dielectric relaxation frequency w, At higher drift fre-
quencies, the CDW is able to relax only over a shorter
length scale, Lig(wy/0,)!/?, during one cycle of the dc
motion. For very high electric fields and drift frequen-
cies, therefore, the equilibrium phase distortions on the
scale Ly disappear, and only small-amplitude, short-
wavelength disturbances near the impurity sites remain.
In this regime the CDW phase will be nearly spatially
uniform, negligibly perturbed by the weak impurity po-
tentials. In view of these drastic changes in the charac-
teristic CDW phase configuration over a wide range in
electric field, it seems implausible that field-independent
fluctuations in the overall threshold voltage could be ob-
tained within this type of model. The experimental rela-
tionship between the threshold fluctuations in the moving
state and the ac response measured in the pinned state,
given in Eq. (5.4), thus appears to close the door on an in-
terpretation of CDW dynamics based upon the assump-
tion of weak pinning.

VI. CONCLUSIONS

In the first part of this paper, we have presented a de-
tailed picture of the CDW’s interaction with a single im-
purity. This has been achieved by consistently incor-
porating the microscopic impurity-CDW potential calcu-
lated by Tiitté6 and Zawadowski® within the large-scale
Ginzburg-Landau framework of Lee and Rice.* The re-
sult indicates that the local CDW pinning will always be
“strong,” in the sense that the CDW’s phase at the im-
purity site will remain close to the optimum value that
matches the localized Friedel oscillations. When the
CDW phase at large distances does not coincide with this
optimum value, the impurity will be surrounded by a
small region of rapid phase gradients, confined approxi-
mately to a distance L,~=~7&, along the chain direction
and to the cross-sectional area A4, of a single conducting
chain. For the impurity concentrations #; << 10000 ppm
of typical CDW crystals, these small phase-gradient re-
gions will not overlap one another. The average CDW
phase away from the impurity sites will then remain
correlated over volumes much larger than the volume
n;~! associated with a single impurity. Since this large-
scale average phase is not dictated by the individual im-
purities, many qualitative features of the low-frequency
response are predicted to be similar to those expected for
“weak” pinning.

Aside from a more detailed picture of the impurity-
CDW interaction, two new results emerge that were not
anticipated in our previous work: (1) Numerical esti-
mates indicate that for a typical isoelectronic impurity (a
Ta atom on a Nb site) the strength of the interaction
should be marginally sufficient to cause complete CDW
amplitude collapse and phase slip at the impurity site
during dc motion. Smaller electron backscattering would
result in a large, but not complete, suppression of the
CDW’s amplitude at the impurity site prior to rapid ad-

vancements in the local phase. ‘“Weak” pinning, on the
other hand, would require an impurity-CDW interaction
smaller by a factor of ~ 100 than our estimate, much too
small for any type of metallic impurity located on the
CDW conducting chains. (2) The process of phase slip
(or substantial amplitude suppression) at a strong impuri-
ty site will incorporate a “remnant polarization” into the
phase gradients surrounding each impurity for continu-
ous dc motion in the same direction. When the direction
of the electric field is reversed, the release of this remnant
polarization will produce the types of “overshoot” phe-
nomena!® that have been experimentally observed for
many years. Our estimates indicate that the magnitude
of this remnant polarization corresponds to a CDW dis-
placement of ~J wavelength, in agreement with recent
low-temperature measurements. !

Because the small phase-gradient regions surrounding
each impurity remain nonoverlapping for reasonable den-
sities, independent thermal fluctuations of the CDW’s
phase configuration will occur at each site. The relatively
small energy scale for these individual fluctuations then
leads to the rapid thermal variation in the depinning field
observed in CDW materials at low temperatures. In or-
der to affect the overall pinning energy within a large
phase-coherent region, however, the independent fluc-
tuating forces originating near each impurity must couple
through the dielectric response function, which limits the
time scale for large-volume distortions of the CDW’s
phase configuration. The resulting spectrum of fluctua-
tions in the total threshold voltage 6V (w) will thus roll
off above the dielectric relaxation frequency. The dielec-
tric relaxation frequency in fully gapped materials be-
comes temperature activated at low temperatures,
wy=0 Ny(T)/e(w—0), and the peak in w8V () is experi-
mentally observed to track o, as a function of tempera-
ture,!® as expected according to our model. At constant
temperature, the spectrum of 8§V () has been shown to
be approximately independent of electric field.!° This is
also to be expected, since the CDW remains strongly
pinned at each impurity site during dc motion, except for
brief intervals just prior to phase slip. The most compel-
ling experimental result obtained by Bhattacharya
et al.’® is the fluctuation-dissipation relationship they
have inferred between the BBN voltage fluctuations ob-
served in the sliding state and the dielectric response
function measured in the pinned state. This relation
clearly implies that the essential features of impurity pin-
ning do not, in fact, change in any important way as the
CDW undergoes dc motion.

In our original work on a strong-pinning theory for
CDW dynamics,® we used a series of simple models to
characterize various aspects of the experimental phenom-
enology. We endeavored, however, to consistently link
these various pieces together to form an overall picture of
the CDW system, based upon our a priori assumption of
strong impurity pinning within the Ginzburg-Landau
framework. By making numerical estimates for the pa-
rameters in the model, we were able to quantitatively in-
terpret a very broad range of experiments. Subsequent
work’ 1% showed that additional experimental areas, in-
volving qualitatively new phenomena, could also be suc-
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cessfully interpreted within our strong-pinning theory.
The present paper essentially completes this process.
Here we have shown how the microscopic impurity-
CDW interaction indeed produces the type of strong pin-
ning and phase slip that was previously hypothesized. In
addition, we have shown that the well-known
“overshoot” effects have their origin in the remnant po-
larization of the microscopic impurity-CDW interaction
(not in some unspecified set of “metastable states”), and
that the many extraordinary properties seen in the
broadband-noise spectrum may also be understood as a
direct consequence of strong impurity pinning. Since
these two topics were the only major experimental areas
which had not been previously addressed, we consider
that the broad outlines for a successful theory of pinning
and dynamics in sliding CDW systems are now in place.
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APPENDIX

Consider that the CDW’s phase is fixed at ¢, by in-
teraction with an impurity located at x =0. When a
different phase ¢ is established at large distances from the
impurity site, our previous three-dimensional Ginzburg-
Landau estimate® shows that the resulting phase gra-
dients will be confined within a distance L~ 7&, near the
impurity site along the chain direction, and to the cross-
sectional area A, of the individual chain containing the
impurity. The gradient energy associated with these dis-
tortions is estimated in Eq. (3.1).

Sufficiently large phase gradients near a strong impuri-
ty will be capable of depressing the magnitude A, of the
CDW order parameter within a distance ~§&; at the im-
purity site. We need to estimate this suppression, be-
cause the Tiitt6-Zawadowski theory of the microscopic
impurity-CDW interaction depends upon the value of A,
over atomic distances at the impurity’s location, through
the results quoted in Egs. (2.3) and (2.4). Ideally, one
would like to solve the three-dimensional Ginzburg-
Landau model for A(r) and ¢(r) as functions of the total
CDW phase displacement (¢ —¢;). The fact that the
transverse amplitude coherence length £, =1 A is smaller
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than the average interchain spacing (A4,)'/?=7-8 A
represents an added complication. In the absence of such
a complete solution, however, we can still make a reason-
able estimate for the amplitude suppression at the impur-
ity site.

The Ginzburg-Landau expression for the free energy
density in one-dimension and at 7 =0 may be written in
the form

2
L) | k2
f() |¢|2+7|¢'4+§(2) ax
2 2
__ ; 3|yl kel
T K Y M

(A1)

Here, ¥=|1|e’?, and the order parameter has been nor-
malized so that |¢| =1 for a uniform system in equilibri-
um. The maximum condensation energy per unit volume
is then f,/2~A?/2w#v, per conducting chain. From
our previous three-dimensional estimates, we know that
outside the region of rapid phase gradients the magnitude
and phase of the order parameter will be approximately
constant, so that [¢|=1 and ¢=¢ for |x| >L,. Within a
very small distance <<§; of the impurity site, the CDW’s
amplitude and phase may also be taken as constants,
lY]=|yy| and $=4¢,, respectively. Averaging over the
length ~2L, containing the phase gradients, we can
therefore make the following rough approximations:

yl?) =l(x =Ly)| [¥(x =0)| =gl ,
<§|_,L|>z 1— 4|

ox L, °’

()"0

Inserting these approximations into the Ginzburg-

‘Landau expression yields an average energy density:

(AR'N)
T80 1+ 31048
fo
(1— 9] )? (¢ —)?
+ (Lo /&> 1l (Lo/E0)* (A3

Since L,~=7§&,, the third term may be neglected for sim-
plicity. Minimizing the energy with respect to || then
gives

A (6—dy)?
0 o !1—ii¢°— (Ad)

ol =3~ (Lo /&)

By this estimate, A, vanishes when the phase displace-
ment reaches O~ L /&,~7, which corresponds to rough-
ly one wavelength. The estimated increase in free energy
may be obtained by inserting the result of Eq. (A4) back
into Eq. (A3):
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8F =2L o[ f(|1ol,d0)+ [ /2]

_2A ($—¢o)2 _1 ($_¢0)2
’IT2 (Lo/go) 2 (Lo/go)z

Note that for L,=8¢, the first term here is identical to
the estimate given for the gradient energy in Eq. (3.1).
The second term will be neglected, since it represents a
relatively small correction prior to amplitude collapse
that does not alter the essential behavior characterized in
Sec. III. Other higher-order terms of this type have al-
ready been discarded by neglecting the third term in Eq.
(A3).

A nearly identical result to Eq. (A4) for the amplitude
suppression may be obtained by employing the model
CDW Hamiltonian proposed by Inui et al.’! The virtue
of this model is that it provides a correct representation
for the amplitude modes as well as the phase modes of
the unpinned system, and also a simple form for their
coupling. Inui et al. have utilized this model to charac-
terize the dynamics of phase-slip processes occurring at
widely spaced strong-pinning centers in one dimension.
Their results presumably reflect the effects of dislocations
and other extended defects across a large number of
parallel neighboring chains in three dimensions. They

. (AS5)
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show that the behavior of “switching” crystals, those
which demonstrate an abrupt and hysteretic onset of
CDW current at threshold, can be reproduced by the
phase-slip phenomena calculated within this model. To
analyze the problem of a single strong impurity embed-
ded within three-dimensional crystal, we have artificially
imposed the constraint that the phase gradients must be
confined to a length L,~=~7£, about the impurity site in
this one-dimensional model, just as we did in the one-
dimensional version of Ginzburg-Landau theory given
above. By making the same kinds of approximations
given in Eq. (A2), the result we obtain for amplitude
suppression at the impurity site within the model of Inui
et al. becomes

_ w50
4 (Lo/&)

Ao

A . (A6)

~
~

Here, A represents the dimensionless electron-phonon
coupling constant sg~0.2, so that m*A/4~1 and the
value of © is increased by ~V 2 relative to the
Ginzburg-Landau result of Eq. (A4). This difference is
insignificant, because it lies within the uncertainty of our

approximations.
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